Blind source separation for over-determined delayed mixtures

Part of Advances in Neural Information Processing Systems 19 (NIPS 2006)

Bibtex Metadata Paper


Lars Omlor, Martin Giese


Blind source separation, i.e. the extraction of unknown sources from a set of given signals, is relevant for many applications. A special case of this problem is dimension reduction, where the goal is to approximate a given set of signals by superpositions of a minimal number of sources. Since in this case the signals outnumber the sources the problem is over-determined. Most popular approaches for addressing this problem are based on purely linear mixing models. However, many applications like the modeling of acoustic signals, EMG signals, or movement trajectories, require temporal shift-invariance of the extracted components. This case has only rarely been treated in the computational literature, and specifically for the case of dimension reduction almost no algorithms have been proposed. We present a new algorithm for the solution of this problem, which is based on a timefrequency transformation (Wigner-Ville distribution) of the generative model. We show that this algorithm outperforms classical source separation algorithms for linear mixtures, and also a related method for mixtures with delays. In addition, applying the new algorithm to trajectories of human gaits, we demonstrate that it is suitable for the extraction of spatio-temporal components that are easier to interpret than components extracted with other classical algorithms.