CMOL CrossNets: Possible Neuromorphic Nanoelectronic Circuits

Part of Advances in Neural Information Processing Systems 18 (NIPS 2005)

Bibtex Metadata Paper


Jung Hoon Lee, Xiaolong Ma, Konstantin K. Likharev


Hybrid “CMOL” integrated circuits, combining CMOS subsystem with nanowire crossbars and simple two-terminal nanodevices, promise to extend the exponential Moore-Law development of microelectronics into the sub-10-nm range. We are developing neuromorphic network (“CrossNet”) architectures for this future technology, in which neural cell bodies are implemented in CMOS, nanowires are used as axons and dendrites, while nanodevices (bistable latching switches) are used as elementary synapses. We have shown how CrossNets may be trained to perform pattern recovery and classification despite the limitations imposed by the CMOL hardware. Preliminary estimates have shown that CMOL CrossNets may be extremely dense (~107 cells per cm2) and operate approximately a million times faster than biological neural networks, at manageable power consumption. In Conclusion, we discuss in brief possible short-term and long-term applications of the emerging technology.

1 Introduction: CMOL Circuits

Recent results [1, 2] indicate that the current VLSI paradigm based on CMOS technology can be hardly extended beyond the 10-nm frontier: in this range the sensitivity of parameters (most importantly, the gate voltage threshold) of silicon field-effect transistors to inevitable fabrication spreads grows exponentially. This sensitivity will probably send the fabrication facilities costs skyrocketing, and may lead to the end of Moore’s Law some time during the next decade. There is a growing consensus that the impending Moore’s Law crisis may be preempted by a radical paradigm shift from the purely CMOS technology to hybrid CMOS/nanodevice circuits, e.g., those of “CMOL” variety (Fig. 1). Such circuits (see, e.g., Ref. 3 for their recent review) would combine a level of advanced CMOS devices fabricated by the lithographic patterning, and two-layer nanowire crossbar formed, e.g., by nanoimprint, with nanowires connected by simple, similar, two-terminal nanodevices at each crosspoint. For such devices, molecular single-electron latching switches [4] are presently the leading candidates, in particular because they may be fabricated using the self-assembled monolayer (SAM) technique which already gave reproducible results for simpler molecular devices [5].