Learning Cue-Invariant Visual Responses

Part of Advances in Neural Information Processing Systems 18 (NIPS 2005)

Bibtex Metadata Paper

Authors

Jarmo Hurri

Abstract

Multiple visual cues are used by the visual system to analyze a scene; achromatic cues include luminance, texture, contrast and motion. Singlecell recordings have shown that the mammalian visual cortex contains neurons that respond similarly to scene structure (e.g., orientation of a boundary), regardless of the cue type conveying this information. This paper shows that cue-invariant response properties of simple- and complex-type cells can be learned from natural image data in an unsupervised manner. In order to do this, we also extend a previous conceptual model of cue invariance so that it can be applied to model simple- and complex-cell responses. Our results relate cue-invariant response properties to natural image statistics, thereby showing how the statistical modeling approach can be used to model processing beyond the elemental response properties visual neurons. This work also demonstrates how to learn, from natural image data, more sophisticated feature detectors than those based on changes in mean luminance, thereby paving the way for new data-driven approaches to image processing and computer vision.