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Abstract 

Recent neurophysiological evidence suggests the ability to interpret 
biological motion is facilitated by a neuronal "mirror system" 
which maps visual inputs to the pre-motor cortex. If the common 
architecture and circuitry of the cortices is taken to imply a 
common computation across multiple perceptual and cognitive 
modalities , this visual-motor interaction might be expected to have 
a unified computational basis. Two essential tasks underlying such 
visual-motor cooperation are shown here to be simply expressed 
and directly solved as transformation-discovery inverse problems: 
(a) discriminating and determining the pose of a primed 3D object 
in a real-world scene, and (b) interpreting the 3D configuration of 
an articulated kinematic object in an image. The recently developed 
map-seeking method provides a mathematically tractable, 
cortically-plausible solution to these and a variety of other inverse 
problems which can be posed as the discovery of a composition of 
transformations between two patterns. The method relies on an 
ordering property of superpositions and on decomposition of the 
transformation spaces inherent in the generating processes of the 
problem. 

1 Introduction 

A variety of "brain tasks" can be tersely posed as transformation-discovery 
problems. Vision is replete with such problems, as is limb control. The problem of 
recognizing the 2D projection of a known 3D object is an inverse problem of 
finding both the visual and pose transformations relating the image and the 3D 
model of the object. When the object in the image may be one of many known 
objects another step is added to the inverse problem, because there are multiple 



candidates each of which must be mapped to the input image with possibly different 
transformations. When the known object is not rigid, the determination of 
articulations and/or morphings is added to the inverse problem. This includes the 
general problem of recognition of biological articulation and motion, a task recently 
attributed to a neuronal mirror-system linking visual and motor cortical areas [1]. 

Though the aggregate transformation space implicit in such problems is vast, a 
recently developed method for exploring vast transformation spaces has allowed 
some significant progress with a simple unified approach. The map-seeking method 
[2,4] is a general purpose mathematical procedure for finding the decomposition of 
the aggregate transformation between two patterns, even when that aggregate 
transformation space is vast and there is no prior information is available to restrict 
the search space. The problem of concurrently searching a large collection of 
memories can be treated as a subset of the transformation problem and consequently 
the same method can be applied to find the best transformation between an input 
image and a collection of memories (numbering at least thousands in practice to 
date) during a single convergence. In the last several years the map-seeking method 
has been applied to a variety of practical problems, most of them related to vision, a 
few related to kinematics, and some which do not correspond to usual categories of 
"brain functions." The generality of the method is due to the fact that only the 
mappings are specialized to the task. The mathematics of the search, whether 
expressed in an algorithm or in a neuronal or electronic circuit, do not change. 
From an evolutionary biological point of view this is a satisfying characteristic for a 
model of cortical function because only the connectivity which implements the 
mappings must be varied to specialize a cortex to a task. All the rest - organization 
and dynamics - would remain the same across cortical areas. 
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Figure 1. Data flow in map-seeking circuit 



Cortical neuroanatomy offers emphatic hints about the characteristics of its solution 
in the vast neuronal resources allocated to creating reciprocal top-down and bottom
up pathways. More specifically, recent evidence suggests this reciprocal pathway 
architecture appears to be organized with reciprocal, co-centered fan outs in the 
opposing directions [3], quite possibly implementing inverse mappings. The data 
flow of map-seeking computations, seen in Figure I, is architecturally compatibility 
with these features of cortical organization. Though not within the scope of this 
discussion, it has been demonstrated [4] that the mathematical expression of the 
map-seeking method, seen in equations 6-9 below, has an isomorphic 
implementation in neuronal circuitry with reasonably realistic dendritic architecture 
and dynamics (e.g. compatible with [5] ) and oscillatory dynamics. 

2 The basis for tractable transformation-discovery 

The related problems of recognition/interpretation of 2D images of static and 
articulated kinematic 3D objects illustrate how cleanly significant vision problems 
may be posed and solved as transformation-discovery inverse ?roblems. The visual 
and pose (in the sense of orientation) transformations , tVIS ua and fo se , between a 
given 3D model ml and the extent of an input image containing a 2D projection 
P(OI) of an object 01 mappable to ml can be expressed 

ff sllal E T Visuol , trse E T pose eq. I 

If we now consider that the model ml may be constructed by the one-to-many 
mapping of a base vector or feature e, and that arbitrarily other models mj may be 
similarly constructed by different mappings, then the transformation f ormation 

corresponding to the correct "memory" converts the memory database search 
problem into another transformation-discovery problem with one more composed 
transformation I 
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Finally, if we allow a morphable object to be "constructed" by a generative model , 
whose various configurations or articulations may be generated by a composition of 
transformations f ell erative of some root or seed feature e, the problem of explicitly 
recognizing the particular configuration of morph becomes a transformation
discovery problem of the form 

p( C ( 0) ) = t,/",al 0 tfse 0 Wile/alive ( e) t lenerative E T generative eq. 3 

These unifying formulations are only useful, however, if there is a tractable method 
of solving for the various transformations. That is what the map-seeking method 
provides. Abstractly the problem is the discovery of a composition of 
transformations between two patterns. In general the transformations express the 
generating process of the problem. Define correspondence c between vectors rand 

w through a composition of L transformations tJ, ,t]2 , .. ·,tfL where t~t E ti ,t~,· ··,t;'t 

1 This illustrates that forming a superposItion of memories is equivalent to forming 
superpositions of transformations. The first is a more practical realization, as seen in 
Figure 1. Though not demonstrated in this paper, the multi-memory architecture has 
proved robust with 1000 or more memory patterns from real-world datasets. 



c( j) = (~I tj i ( r) , w) eq. 4 

where the composition operator is defined 

L . (I = 1···L ( L o ( L- I ... o (1 (r) 
o t l ( r) = )L JL-I J 1 
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Let C be an L dimensional matrix of values of c(j) whose dimensions are n, .. . nL. 
The problem, then is to find 

x = argmax c(j) eq. 5 

The indices x specify the sequence of transformations that best correspondence 
between vectors rand w. The problem is that C is too large a space to search for x 
by conventional means. Instead, a continuous embedding of C permits a search 
with resources proportional to the sum of sizes of the dimensions of C instead of 
their product. 

C is embedded in a superposition dot product space Q defined 

eq. 6 

where G = [g;:" ] m = 1···L,x", = 1·· ·nm nm is number of t in layer m, g;:, E [0,1] , 
t: I is adjoint of tf . 

In Q space, the solution to eq. 5 lies along a single axis in the set of axes 
represented each row of G. That is, gIll =< 0,.· · 'U'm" · ·,0> U'm > 0 which 

corresponds to the best fitting transformation tx , where Xm is the mth index in x in 

eq. 5. This state is reached from an initial ~'~ate G = [1] by a process termed 

superposition culling in which the components of grad Q are used to compute a path 
in steps Llg , 

eq. 7 

eq. 8 

The functionfpreserves the maximal component and reduces the others: in neuronal 
terms, lateral inhibition . The resulting path along the surface Q can be thought of as 
a "high traverse" in contrast to the gradient ascent or descent usual in optimization 
methods . The price for moving the problem into superposition dot product space is 
that collusions of components of the superpositions can result in better matches for 
incorrect mappings than for the mappings of the correct solution. If this occurs it is 
almost always a temporary state early in the convergence. This is a consequence of 
the ordering property of superpositions (OPS) [2,4], which, as applied here, 
describes the characteristics of the surface Q. For example, let three 



superpositions r = :t U; , S = :t V j and s' = :t Vk be formed from three sets of sparse 
i= 1 j = l k = l 

vectors u;ER, Vj ES and VkES' where R n S=0 and R n S'=vq • Then the 
following relationship expresses the OPS: 

define Pco" ec! = p( r • s' > r. s), P'"co,,'eCl = p( r. s' :::; r. s) 

then Pcorrecl > R ncorrect or R orrecf > 0.5 

and as n, m --+ 1 Pco"'ect --+ l.0 

Applied to eq. 8, this means that for superposItIOns composed of vectors which 
satisfy the distribution properties of sparse, decorrelating encodings2 (a biologically 
plausible assumption [6]), the probability of the maximum components of grad Q 
moving the solution in the correct direction is always greater than 0.5 and increases 
toward 1.0 as the G becomes sparser. In other words, the probability of the 
occurrence of collusion decreases with the decrease in numbers of contributing 
components in the superposition(s), and/or the decrease in their gating coefficients. 

3 The map-seeking method and application 

A map-seeking circuit (MSC) is composed of several transformation or mapping 
layers between the input at one end and a memory layer at the other, as seen in 
Figure l. The compositional structure is evident in the simplicity of the equations 
(eqs. 9-12 below) which define a circuit of any dimension. In a multi-layer circuit 
of L layers plus memory with n{ mappings in layer I the forward path signal for layer 
m is computed 

11m 

f m = Lg;" t;' (rm-l) for m = 1. .. L 
) = 1 

The signal for layer m is 

form=1. .. L 

or !gZ" Wk or W for m = L+ I 
k=1 

The mapping coefficients g are updated by the recurrence 

gi" := K( gi", ti" (f m- I ). b ",+I) for m = 1. . . L ,i = 1. . . n, 

g/+I := K( g/+I , f' • W k ) for k = l... nw (optional) 

eq. 9 

computed 

eq. 10 

eq. 11 

where match operator u • v = q, q is a scalar measure of goodness-of-match between 
u and v, and may be non-linear. When. is a dot product, the second argument of K 

is the same as oQlg in eq. 7. The competition function K is a realization of lateral 
inhibition function/in eq. 8. It may optionally be applied to the memory layer, as 
seen in eq. 11. 

2 A restricted case of the superposition ordering property using non-sparse representation 
is exploited by HRR distributed memory. See [7] for an analysis which is also applicable 
here. 



K(g; , q;) = max [0, g; - k, -(1- m:~ q J J eq. 12 

Thresholds are normally applied to q and g, below which they are set to zero to 
speed convergence. In above, f is the input signal, tT , (Ill are the /h forward and 

backward mappings for the m th layer, Wk is the kth memory pattern, z( ) is a non
linearity applied to the response of each memory. gill is the set of mapping 
coefficients gT for the m th layer, each of which is associated with mapping tT and 

is modified over time by the competition function K( ). 

Recognizing 2D projections of 3D objects under real operating conditions 

(a) 3D memory model (b )source image (c) input image - blurred 
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Figure 2. Recognizing target among distractor vehicles. (a) M60 3D memory model ; 
(b) source image, Fort Carson Data Set; (c) Gaussian blurred input image; (d-f) 
isolation of target in layer 0, iterations 1, 3, 12; (g) pose determination in final 
iteration , layer 4 backward - presented left-right mirrored to reflect mirroring 
determined in layer 3. M-60 model courtesy Colorado State University. 

Real world problems of the form expressed in eq. 1 often present objects at 
distances or in conditions which so limit the resolution that there are no alignable 
features other than the shape of the object itself, which is sufficiently blurred as to 
prevent generating reliable edges in a feed-forward manner (e.g. Fig. 2c). In the 
map-seeking approach, however, the top-down (in biological parlance) inverse
mappings of the 3D model are used to create a set of edge hypotheses on the 
backward path out of layer 1 into layer O. In layer 0 these hypotheses are used to 
gate the input image. As convergence proceeds, the edge hypotheses are reduced to 
a single edge hypothesis that best fits the grayscale input image. Figure 2 shows this 
process applied to one of a set of deliberately blurred images from the Fort Carson 
Imagery Data Set. The MSC used four layers of visual transformations: 14,400 
translational, 31 rotational, 41 scaling, 481 3D projection. The MSC had no 
difficulty distinguishing the location and orientation of the tank, despite distractors 



and background clutter: in all tests in the dataset target was correctly located. In 
effect, once primed with a top-down expectation, attentional behavior IS an 
emergent property of application of the map-seeking method to vision [8]. 

Adapting generative models by transformation 

"The direct-matching hypothesis of the interpretation of biological motion] holds 
that we understand actions when we map the visual representation of the observed 
action onto our motor representation of the same action." [1] This mapping, 
attributed to a neuronal mirror-system for which there is gathering neurobiological 
evidence (as reviewed in [1]) , requires a mechanism for projecting between the 
visual space and the constrained skeletal joint parameter (kinematic) space to 
disambiguate the 2D projection of body structure. [4] Though this problem has been 
solved to various degrees by other computational methods, a review of which is 
beyond the scope of this discussion, to the author's knowledge none of these have 
biological plausibility. The present purpose is to show how simply the problem can 
be expressed by the generative model interpretation problem introduced in eq. 3 and 
solve by map-seeking circuits. An idealized example is the problem of interpreting 
the shape of a featureless "snake" articulated into any configuration, as appears in 
Fig. 3. 

(e) (d) 

Figure 3. Projection between visual and kinematic spaces with two map-seeking 
circuits. (a) input view, (b) top view, (c) projection of 3D occluding contours, 
(d,e) projections of relationship of occluding contours to generating spine. 

The solution to this problem involves two coupled map-seeking circuits. The 
kinematic circuit layers model the multiple degrees of freedom (here two angles, 
variable length and optionally variable radius from spine to surface) of each of the 
connected spine segments. The other circuit determines the visual transformations, 
as seen in the earlier example. The surface of the articulated cylinder is mapped 
from an axial spine. The points where that surface is tangent to the viewpoint 
vectors define the occluding contours which, projected in 2D, become the object 
silhouette. The problem is to find the articulations, segment lengths (and optionally 
segment diameter) which account for the occluding contour matching the silhouette 
in the input image. In the MSC solution, the initial state all possible articulations of 
the snake spine are superposed, and all the occluding contours from a range of 
viewing angles are projected into 2D. The latter superposition serves as the 
backward input to the visual space map-seeking circuit. Since the snake surfaceis 
determined by all of the layers of the kinematic circuit, these are projected in 




