
Distributed Optimization in Adaptive Networks

Ciamac C. Moallemi
Electrical Engineering
Stanford University
Stanford, CA 94305

ciamac@stanford.edu

Benjamin Van Roy
Management Science and Engineering

and Electrical Engineering
Stanford University
Stanford, CA 94305

bvr@stanford.edu

Abstract

We develop a protocol for optimizing dynamic behavior of a network
of simple electronic components, such as a sensor network, an ad hoc
network of mobile devices, or a network of communication switches.
This protocol requires only local communication and simple computa-
tions which are distributed among devices. The protocol is scalable to
large networks. As a motivating example, we discuss a problem involv-
ing optimization of power consumption, delay, and buffer overflow in a
sensor network.

Our approach builds on policy gradient methods for optimization of
Markov decision processes. The protocol can be viewed as an extension
of policy gradient methods to a context involving a team of agents op-
timizing aggregate performance through asynchronous distributed com-
munication and computation. We establish that the dynamics of the pro-
tocol approximate the solution to an ordinary differential equation that
follows the gradient of the performance objective.

1 Introduction

This paper is motivated by the potential of policy gradient methods as a general approach
to designing simple scalable distributed optimization protocols for networks of electronic
devices. We offer a general framework for such protocols that builds on ideas from the pol-
icy gradient literature. We also explore a specific example involving a network of sensors
that aggregates data. In this context, we propose a distributed optimization protocol that
minimizes power consumption, delay, and buffer overflow.

The proposed approach for designing protocols based on policy gradient methods com-
prises one contribution of this paper. In addition, this paper offers fundamental contribu-
tions to the policy gradient literature. In particular, the kind of protocol we propose can be
viewed as extending policy gradient methods to a context involving a team of agents opti-
mizing system behavior through asynchronous distributed computation and parsimonious
local communication. Our main theoretical contribution is to show that the dynamics of
our protocol approximate the solution to an ordinary differential equation that follows the
gradient of the performance objective.

2 A General Formulation

Consider a network consisting of a set of componentsV = {1, . . . , n}. Associated with
this network is a discrete-time dynamical system with a finite state spaceW. Denote the
state of the system at timek by w(k), for k = 0, 1, 2, There aren subsetsW1, . . . , Wn

of W, each consisting of states associated with events at componenti. Note that these
subsets need not be mutually exclusive or totally exhaustive. At thekth epoch, there are
n control actionsa1(k) ∈ A1, . . . , an(k) ∈ An, where eachAi is a finite set of possible
actions that can be taken by componenti. We sometimes write these control actions in
a vector forma(k) ∈ A = A1 × · · ·An. The actions are governed by a set of policies
π1

θ1
, . . . , πn

θn
, parameterized by vectorsθ1 ∈ RN1 , . . . , θn ∈ RNn . Eachith action pro-

cess only transitions when the statew(k) transitions to an element ofWi. At the time of
transition, the probability thatai(k) becomes anyai ∈ Ai is given byπi

θi
(ai|w(k)).

The state transitions depend on the prior state and action vector. In particular, let
P (w′, a′, w) be a transition kernel defining the probability of statew given prior statew′

and actiona′. Lettingθ = (θ1, . . . , θn), we have

Pr {w(k) = w, a(k) = a|w(k − 1) = w′, a(k − 1) = a′, θ}

= P (w′, a′, w)
∏

i:w∈Wi

πi
θi

(ai|w)
∏

i:w/∈Wi

1{a′
i=ai}.

DefineFk to be theσ-algebra generated by{(w(`), a(`))|` = 1, . . . , k}.
While the system is in statew ∈ W and actiona ∈ A is applied, each componenti
receives a rewardri(w, a). The average reward received by the network isr(w, a) =
1
n

∑n
i=1 ri(w, a).

Assumption 1. For everyθ, the Markov chainw(k) is ergodic (aperiodic, irreducible).

Given Assumption 1, for each fixedθ, there is a well-defined long-term average reward
λ(θ) = limK→∞

1
K E[

∑K−1
k=0 r(w(k), a(k))].

We will consider a stochastic approximation iteration

(1) θi(k + 1) = θi(k) + εχi(k).

Here,ε > 0 is a constant step size andχi(k) is a noisy estimate of the gradient∇θi
λ(θ(k))

computed at componenti based on the component’s historically observed states, actions,
and rewards, in addition to communication with other components. Our goal is to develop
an estimatorχi(k) that can be used in an adaptive, asynchronous, and decentralized con-
text, and to establish the convergence of the resulting stochastic approximation scheme.

Our approach builds on policy gradient algorithms that have been proposed in recent years
([5, 7, 8, 3, 4, 2]). As a starting point, consider a gradient estimation method that is a
decentralized variation of the OLPOMDP algorithm of [3, 4, 1]. In this algorithm, each
componenti maintains and updates an eligibility vectorzβ

i (t) ∈ RNi , defined by

(2) zβ
i (k) =

k∑
`=0

βk−`
∇θi

πi
θi(`)

(ai(`)|w(`))

πi
θi(`)

(ai(`)|w(`))
1{w(`)∈Wi},

for someβ ∈ (0, 1). The algorithm generates an estimateχ̄i(k) = r(w(t), a(t))zβ
i (k) to

the local gradient∇θi
λ(θ(k)). Note that while the credit vectorzβ

i (t) can be computed us-
ing only local information, the gradient estimateχ̄i(t) cannot be computed without knowl-
edge of the global rewardr(x(t), a(t)) at each time. In a fully decentralized environment,
where components only have knowledge of their local rewards, this algorithm cannot be
used.

In this paper, we present a simple scalable distributed protocol through which rewards
occurring locally at each node are communicated over time across the network and gradient
estimates are generated at each node based on local information. A fundamental issue
this raises is that rewards may incur large delays before being communicated across the
network. Moreover, these delays may be random and may correlated with the underlying
events that occur in operation of the network. We address this issue and establish conditions
for convergence. Another feature of the protocol is that it is completely decentralized
– there is no central processor that aggregates and disseminates rewards. As such, the
protocol is robust to isolated changes or failures in the network. In addition to design of the
protocol, a significant contribution is in the protocol’s analysis, which we believe requires
new ideas beyond what has been employed in the prior policy gradient literature.

3 A General Framework for Protocols

We will make the following assumption regarding the policies, which is common in the
policy gradient literature ([7, 8, 3, 4, 2]).
Assumption 2. For all i and everyw ∈ Wi, ai ∈ Ai, πi

θi
(ai|w) is a continuously differen-

tiable function ofθi. Further, for everyi, there exists a bounded functionLi(w, ai, θ) such
that for all w ∈ Wi, ai ∈ Ai,∇θi

πi
θi

(ai|w) = πi
θi

(ai|w)Li(w, ai, θ).

The latter part of the assumption is satisfied, for example, if there exists a constantε > 0
such that for eachi,w ∈ Wi,ai ∈ Ai, eitherπi

θi
(ai|w) = 0 for everyθi or πi

θi
(ai|w) ≥ ε,

for all θi.

Consider the following gradient estimator:

(3) χi(k) = zβ
i (k)

1
n

n∑
j=1

k∑
`=0

dα
ij(`, k)rj(`),

where we use the shorthandrj(`) = rj(w(`), a(`)). Here, the random variables
{dα

ij(`, k)}, with parameterα ∈ (0, 1), represent an arrival process describing the com-
munication of rewards across the network. Indeed,dα

ij(`, k) is the fraction of the reward
rj(`) at componentj that is learned by componenti at timek ≥ `. We will assume the
arrival process satisfies the following conditions.
Assumption 3. For eachi, j, `, andα ∈ (0, 1), the process{dα

ji(`, k)|k = `, ` + 1, ` +
2, . . .} satisfies:

1. dα
ji(`, k) is Fk-measurable.

2. There exists a scalarγ ∈ (0, 1) and a random variablec` such that for allk ≥ `,∣∣∣∣ dα
ji(`, k)

(1− α)αk−`
− 1

∣∣∣∣ < c`γ
k−`,

with probability 1. Further, we require that the distribution ofc` givenF` depend
only on (w(`), a(`)), and that there exist a constantc̄ such thatE[c`|w(`) =
w, a(`) = a] < c̄ < ∞, with probability 1 for all initial conditionsw ∈ W
anda ∈ A.

3. The distribution of{dα
ji(`, k)|k = `, ` + 1, . . .} givenF` depends only onw(`)

anda(`).

The following result, proved in our appendix [9], establishes the convergence of the long-
term sample averages ofχi(t) of the form (3) to an estimate of the gradient. This type of
convergence is central to the convergence of the stochastic approximation iteration (1).

Theorem 1. Holdingθ fixed, the limit

∇αβ
θi

λ(θ) = lim
K→∞

1
K

E

[
K−1∑
k=0

χi(k)

]

exists. Further,

lim
α↑1

lim sup
β↑1

∥∥∥∇αβ
θi

λ(θ)−∇θiλ(θ)
∥∥∥ = 0.

.

4 Example: A Sensor Network

In this section, we present a model of a wireless network of sensors that gathers and com-
municates data to a central base station. Our example is motivated by issues arising in the
development of sensor network technology being carried out by commercial producers of
electronic devices. However, we will not take into account the many complexities asso-
ciated with real sensor networks. Rather, our objective is to pose a simplified model that
motivates and provides a context for discussion of our distributed optimization protocol.

4.1 System Description

Consider a network ofn sensors and a central base station. Each sensor gathers packets of
data through observation of its environment, and these packets of data are relayed through
the network to the base station via multi-hop wireless communication. Each sensor retains
a queue of packets, each obtained either through sensing or via transmission from another
sensor. Packets in a queue are indistinguishable – each is of equal size and must be trans-
ferred to the central base station. We take the state of a sensor to be the number of packets
in the queue and denote the state of theith sensor at timek by xi(k). The number of
packets in a queue cannot exceed a finite buffer size, which we denote byx.

A number of triggering events occur at any given device. These include (1) packetizing of
an observation (2) reception of a packet from another sensor, (3) transmission of a packet
to another sensor, (4) awakening from a period of sleep, (5) termination of a period of
attempted reception, (6) termination of a period of attempted transmission. At the time of
a triggering event, the sensor must decide on its next action. Possible actions include (1)
sleep, (2) attempt transmission, (3) attempt reception. When the buffer is full, options are
limited to (1) and (2). When the buffer is empty, options are limited (1) and (3). The action
taken by theith sensor at timek is denoted byai(k).

The base station will be thought of as a sensor that has an infinite buffer and perpetually
attempts reception. For eachi, there is a setN(i) of entities with which theith sensor can
directly communicate. If theith sensor is attempting transmission of a packet and there
is at least one element ofN(i) that is simultaneously attempting reception and is closer to
the base station than componenti, the packet is transferred to the queue of that element. If
there are multiple such elements, one of them is chosen randomly. Note that if among the
elements ofN(i) that are attempting reception, all are further away from the base station
than componenti, no packet is transmitted.

Observations are made and packetized by each sensor at random times. If a sensor’s buffer
is not full when an observation is packetized, an element is added to the queue. Otherwise,
the packet is dropped from the system.

4.2 Control Policies and Objective

Every sensor employs a control policy that selects an action based on its queue length
each time a triggering event occurs. The action is maintained until occurrence of the next
triggering event. Eachith sensor’s control policy is parameterized by a vectorθi ∈ R2.
Givenθi, at an event time, if theith sensor has a non-empty queue, it chooses to transmit
with probabilityθi1. If the ith sensor does not transmit and its queue is not full, it chooses
to receive with probabilityθi2. If the sensor does not transmit or receive, then it sleeps. In
order to satisfy Assumption 2, we constrainθi1 andθi2 to lie in an interval[θ`, θh], where
0 < θ` < θh < 1.

Assume that each sensor has a finite power supply. In order to guarantee a minimum life-
span for the network, we will require that each sensor sleeps at least a fractionfs of the
time. This is enforced by considering a time window of lengthTs. If, at any given time, a
sensor has not slept for a total fraction of a leastfs of the preceding timeTs, it is forced to
sleep and hence not allowed to transmit or receive.

The objective is to minimize a weighted sum of the average delay and average number of
dropped packets per unit of time. Delay can be thought of as the amount of time a packet
spends in the network before arriving at the base station. Hence, the objective is:

max
θ1,...,θn

lim sup
K→∞

− 1
K

K−1∑
k=0

1
n

n∑
i=1

(xi(k) + ξDi(k)) ,

whereDi(k) is the number of packets dropped by sensori at timek, andξ is a weight
reflecting the relative importance of delay and dropped packets.

5 Distributed Optimization Protocol

We now describe a simple protocol by which components a the network can communicate
rewards, in a fashion that satisfies the requirements of Theorem 1 and hence will produce
good gradient estimates. This protocol communicates the rewards across the network over
time using a distributed averaging procedure.

In order to motivate our protocol, consider a different problem. Imagine each componenti
in the network is given a real valueRi. Our goal is to design an asynchronous distributed
protocol through which each node will obtain the averageR =

∑n
i=1 Ri/n. To do this,

define the vectorY (0) ∈ Rn by Yi(0) = Ri for all i. For each edge(i, j), define a function
Q(i,j) : Rn 7→ Rn by

Q
(i,j)
` (Y) =

{
Yi+Yj

2 if ` ∈ {i, j},
Y` otherwise.

At each timet, choose an edge(i, j), and setY (k + 1) = Q(i,j)(Y (k)). If the graph
is connected and every edge is sampled infinitely often, thenlimk→∞ Y (t) = Y , where
Y i = R. To see this, note that the operatorsQ(i,j) preserve the average value of the vector,
hence

∑n
i=1 Yi(k)/n = R. Further, for anyk, eitherY (k+1) = Y (k) or‖Y (k+1)−Y ‖ <

‖Y (k)− Y ‖. Further,Y is the unique vector with average valueR that is a fixed point for
all operatorsQ(i,j). Hence, as long as the graph is connected and each edge is sampled
infinitely often,Yi(k)→R ask→∞ and the components agree to the common averageR.

In the context of our distributed optimization protocol, we will assume that each component
i maintains a scalar valueYi(k) at timek representing an estimate of the global reward.
We will define a structure by which components communicate. DefineE to be the set
of edges along which communication can occur. For an ordered set of distinct edgesS =

(
(ii, j1), . . . , (i|S|, j|S|)

)
, define a setWS ⊂ W. Letσ(E) be the set of all possible ordered

sets of disjoint edgesS, including the empty set. We will assume that the sets{WS |S ∈
σ(E)} are disjoint and together form a partition ofW.

If w(k) ∈ WS , for some setS, we will assume that the components along the edges
in S communicate in the order specified byS. Define QS = Q(i|S|,j|S|) · · ·Q(i1,j1),
where the terms in the product are taken over the order specified byS. DefineR(k) =
(r1(k), . . . , rn(k)) is a vector of rewards occurring at timek. The update rule for the
vectorY (k) is given byY (k + 1) = R(k + 1) + αQS(k+1)Y (k), where

QS(k+1) =
∑

S∈σ(E)

1{w(k+1)∈WS}Q
S .

Let Ê = {(i, j)|(i, j) ∈ S, WS 6= ∅}. We will make the following assumption.

Assumption 4. The graph(V, Ê) is connected.

Since the process(w(k), a(k)) is aperiodic and irreducible (Assumption 1), this assumption
guarantees that every edge on a connected subset of edges is sampled infinitely often.

Policy parameters are updated at each component according to the rule:

(4) θi(k + 1) = θi(k) + εzβ
i (k)(1− α)Yi(k).

In relation to equations (1) and (3), we have

(5) dα
ji(`, k) = n(1− α)αk−`

[
Q̂(`, k)

]
ij

,

whereQ̂(`, k) = QS(k−1) · · ·QS(`).

The following theorem, which relies on a general stochastic approximation result from [6]
together with custom analysis available in our appendix [9], establishes the convergence of
the distributed stochastic iteration method defined by (4).
Theorem 2. For eachε > 0, define{θε(k)|k = 0, 1, . . .} as the result of the stochastic ap-
proximation iteration(4) with the fixed value ofε. Assume the set{θε(k)|k, ε} is bounded.
Define the continuous time interpolationθ̄ε(t) by settingθ̄ε(t) = θε(k) for t ∈ [kε, kε+ ε).
Then, for any sequence of processes{θ̄ε(t)|ε→0} there exists a subsequence that weakly
converges tōθ(t) asε→0, whereθ̄(t) is a solution to the ordinary differential equation

(6) ˙̄θ(t) = ∇αβ
θ λ(θ̄(t)).

Further, defineL to be the set of limit points of(6), and for aδ > 0, Nδ(L) to be a
neighborhood of radiusδ aboutL. The fraction of time that̄θε(t) spends inNδ(L) over
the time interval[0, T] goes to 1 in probability asε→0 andT→∞.

Note that since we are using a constant step-sizeε, this type of weak convergence is the
strongest one would expect. The parameters will typically oscillate in the neighborhood of
an limit point, and only weak convergence to a distribution centered around a limit point
can be established. An alternative would be to use a decreasing step sizeε(k)→0 in (4).
In such instances, probability 1 convergence to a local optimum can often be established.
However, with decreasing step sizes, the adaptation of parameters becomes very slow as
ε(n) decays. We expect our protocol to be used in an online fashion, where it is ideal to
be adaptive to long-term changes in network topology or dynamics of the environment.
Hence, the constant step size case is more appropriate as it provides such adaptivity.

Also, a boundedness requirement on the iterates in Theorem 2 is necessary for the math-
ematical analysis of convergence. In practical numerical implementations, choices of the
policy parametersθi would be constrained to bounded sets ofHi ⊂ RNi . In such an imple-
mentation, the iteration (4) would be replaced with an iteration projected onto the setHi.
The conclusions of Theorem 2 would continue to hold, but with the ODE (6) replaced with
an appropriate projected ODE. See [6] for further discussion.

5.1 Relation to the Example

In the example of Section 4, one approach to implementing our distributed optimization
protocol involves passing messages associated with the optimization protocol alongside
normal network traffic, as we will now explain. Eachith sensor should maintain and update
two vectors: a parameter vectorθi(k) ∈ R2 and an eligibility vectorzβ

i (k). If a triggering
event occurs at sensori at timek, the eligibility vector is updated according to

zβ
i (k) = βzβ(k − 1) +

∇θi
πi

θi(k)(ai(k)|w(k))

πi
θi(k)(ai(k)|w(k))

.

Otherwise,zβ
i (k) = βzβ

i (k − 1). Furthermore, each sensor maintains an estimateYi(k)
of the global reward. At each timek, eachith sensor observes a reward (negative cost) of
ri(k) = −xi(k) − ξDi(k). If two neighboring sensors are both not asleep at a timek,
they communicate their global reward estimates from the previous time. If theith sensor
is not involved in a reward communication event at that time, its global reward estimate
is updated according toYi(k) = αYi(k − 1) + ri(k). On the other hand, at any time
k that there is a communication event, its global reward estimate is updated according to
Yi(k) = ri(k)+α(Yi(k)+αYj(k))/2, wherej is the index of the sensor with which com-
munication occurs. If communication occurs with multiple neighbors, the corresponding
global reward estimates are averaged pairwise in an arbitrary order. Clearly this update
process can be modeled in terms of the setsWS introduced in the previous section. In this
context, the grapĥE contains an edge for each pair of neighbors in the sensor network,
where the neighborhood relations are capture byN, as introduced in Section 4. To optimize
performance over time, eachith sensor would update its parameter values according to our
stochastic approximation iteration (4).

To highlight the simplicity of this protocol, note that each sensor need only maintain and
update a few numerical values. Furthermore, the only communication required by the
optimization protocol is that an extra scalar numerical value be transmitted and an extra
scalar numerical value be received during the reception or transmission of any packet.

As a numerical example, consider the network topology in Figure 1. Here, at every time
step, an observation arrives at a sensor with a0.02 probability, and each sensor maintains
a queue of up to 20 observations. Policy parametersθi1 and θi2 for each sensori are
constrained to lie in the interval[0.05, 0.95]. (Note that for this set of parameters, the
chance of a buffer overflow is very small, and hence did not occur in our simulations.)
A baseline policy is defined by having leaf nodes transmit with maximum probability, and
interior nodes splitting their time roughly evenly between transmission and reception, when
not forced to sleep by the power constraint.

Applying our decentralized optimization method to this example, it is clear in Figure 2
that the performance of the network is quickly and dramatically improved. Over time,
the algorithm converges to the neighborhood of a local optimum as expected. Further,
the algorithm achieves qualitatively similar performance to gradient optimization using the
centralized OLPOMDP method of [3, 4, 1], hence decentralization comes at no cost.

6 Remarks and Further Issues

We are encouraged by the simplicity and scalability of the distributed optimization protocol
we have presented. We believe that this protocol represents both an interesting direction
for practical applications involving networks of electronic devices and a significant step in
the policy gradient literature. However, there is an important outstanding issue that needs
to be addressed to assess the potential of this approach: whether or not parameters can be
adapted fast enough for this protocol to be useful in applications. There are two dimensions

Figure 1: Example network topology. Figure 2: Convergence of method.

root

8

7

2 1

4 3 5

9610

0 1 2 3 4 5 6 7 8 9 10

x 10
6

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Iteration

Lo
ng

−
T

er
m

 A
ve

ra
ge

 R
ew

ar
d

OLPOMDP
decentralized
baseline

to this issue: (1) variance of gradient estimates and (2) convergence rate of the underlying
ODE. Both should be explored through experimentation with models that capture practical
contexts. Also, there is room for research that explores how variance can be reduced and
the convergence rate of the ODE can be accelerated.

Acknowledgements

The authors thank Abbas El Gamal, Abtin Keshavarzian, Balaji Prabhakar, and Elif Uysal
for stimulating conversations on sensor network models and applications. This research
was supported by NSF CAREER Grant ECS-9985229 and by the ONR under grant MURI-
N00014-00-1-0637. The first author was also supported by a Benchmark Stanford Graduate
Fellowship.

References

[1] P. L. Bartlett and J. Baxter. Stochastic Optimization of Controlled Markov Decision Processes.
In IEEE Conference on Decision and Control, pages 124–129, 2000.

[2] P. L. Bartlett and J. Baxter. Estimation and Approximation Bounds for Gradient-Based Rein-
forcement Learning.Journal of Computer and System Sciences, 64:133–150, 2002.

[3] J. Baxter and P. L. Bartlett. Infinite-Horizon Gradient-Based Policy Search.Journal of Artificial
Intelligence Research, 15:319–350, 2001.

[4] J. Baxter, P. L. Bartlett, and L. Weaver. Infinite-Horizon Gradient-Based Policy Search: II. Gradi-
ent Ascent Algorithms and Experiments.Journal of Artificial Intelligence Research, 15:351–381,
2001.

[5] T. Jaakkola, S. P. Singh, and M. I. Jordan. Reinforcement Learning Algorithms for Partially
Observable Markov Decision Problems. InAdvances in Neural Information Processing Systems
7, pages 345–352, 1995.

[6] H. J. Kushner and G. Yin.Stochastic Approximation Algorithms and Applications. Springer-
Verlag, New York, NY, 1997.

[7] P. Marbach, O. Mihatsch, and J.N. Tsitsiklis. Call Admission Control and Routing in Integrated
Service Networks. InIEEE Conference on Decision and Control, 1998.

[8] P. Marbach and J.N. Tsitsiklis. Simulation–Based Optimization of Markov Reward Processes.
IEEE Transactions on Automatic Control, 46(2):191–209, 2001.

[9] C. C. Moallemi and B. Van Roy. Appendix to NIPS Submission. URL:http://www.
moallemi.com/ciamac/papers/nips-2003-appendix.pdf, 2003.

