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Abstract

Low rank approximation techniques are widespread in pattern recogni-
tion research — they include Latent Semantic Analysis (LSA), Proba-
bilistic LSA, Principal Components Analysus (PCA), the Generative As-
pect Model, and many forms of bibliometric analysis. All make use of a
low-dimensional manifold onto which data are projected.

Such techniques are generally “unsupervised,” which allows them to
model data in the absence of labels or categories. With many practi-
cal problems, however, some prior knowledge is available in the form
of context. In this paper, I describe a principled approach to incorpo-
rating such information, and demonstrate its application to PCA-based
approximations of several data sets.

1 Introduction

Many practical problems involve modeling large, high-dimensional data sets to uncover
similarities or latent structure. Linear low rank approximation techniques such as PCA [12],
LSA [5], PLSA [6] and generative aspect models [1] are powerful tools for approaching
these tasks. They identify (relatively) low-dimensional hyperplanes that best approximate
the data according to a given noise model. In doing so, they exploit and expose regularities
in the data: the hyperplanes represent a latent space whose dimensions are often observed
to correspond to distinct latent categories in the data set. For example, an LSA-derived
low-rank approximation to a corpus of news stories may have dimensions corresponding
to “politics,” “finance,” “sports,” etc. Documents with the same inferred sources (therefore
“about” the same topic) generally lie close to each other in the latent space.

The broad applicability of these techniques comes from the fact that they are essentially
“unsupervised” – a model is learned in the absence of labels indicating class or category
memberships. There are, however, many situations in which some prior information is
available; in these cases, we would like to have some way of using that information to
improve our model.

Nigam et al. [10] studied the problem of learning to classify data into pre-existing cat-
egories in the presence of labeled and unlabeled examples. Their approach augmented a
traditional supervised learning algorithm with distribution information made available from
the unlabeled data. In contrast, this paper considers a method for augmenting a traditional
unsupervised learning problem with the addition of equivalence classes.



Equivalence classes are a natural concept for many real-world problems. We frequently
have some reason for believing that a set of observations are similar in some sense without
wanting to or being able to say why they are similar. Note that the sets are not required to
be comprehensive — we may only have known associations between a handful of observa-
tions. Further, the sets are not required to be disjoint; we may know that members of a set
are similar, but there is no implication that members of two different sets are dissimilar.

In any case, the hope is that by indicating which observations are similar, we can bias our
model focus on relevant features and to ignore differences that, while statistically signif-
icant, are not correlated with our idea of similarity in the problem at hand. This paper
describes an algorithm validating the use of this approach.

1.1 Related work

There is too large a literature examining the combination of supervised and unsupervised
learning to cover here; below I mention in passing some of the most relevant research.

In terms of conceptual similarity, multiple discriminant analysis (MDA) and oriented prin-
cipal components analysis (OPCA) are techniques that attempt to maximize the fidelity of
a linear low rank approximation while minimizing the variance of data belonging to des-
ignated equivalence classes [2]. The difference with the approach discussed here is that
MDA and OPCA maximize a ratio of variances rather than a mixture; this is equivalent to
making the assumption that the covariance matrices for each set are tied. Another related
technique is multidimensional scaling (MDS) which, aside from sharing the ratio-based cri-
terion, makes the added assumption that the precise degree of similarity (or dissimilarity)
of two data points is to be enforced. In general, which set of assumptions is best depends
on the problem at hand.

In terms of implementation, the present algorithm owes a great deal to the “shadow targets”
algorithm for Neuroscale [8, 15], whose eponymous data points enforce equivalence classes
on sets of (otherwise) unsupervised data. That algorithm trades fidelity of representation
against fidelity of equivalence classes much in the same way as Equation 4, although it
does so in the context of a Kohonen neural network instead of a linear mapping.

Another closely-related technique is CI-LSI [7], which uses latent semantic analysis for
cross-language retrieval. The technique involves training on text documents from a parallel
corpus for two or more languages (e.g. French and English), such that each document exists
as both an English and French version. In CI-LSI, each document is merged with its twin,
and the hyperplane is fit to the set of paired documents.

The goal of CI-LSI matches the goal of this paper, and the technique can in fact be seen as
a special case of the informed projections discussed here. By using the “mean” of a pair of
documents as a proxy for the documents themselves, we assert that the two come from a
common source; fitting a model to a collection of such means finds a maximum likelihood
solution subject to the constraint that both members of a pair comes from a common source.

2 Informed and uninformed projections

To introduce informed projections, I will first briefly review principal components analysis
(PCA) and an algorithm for efficiently computing the principal components of a data set.

2.1 PCA and EMPCA

Given a finite data set X ⊂ Rn, where each column corresponds to one observation, PCA
can be used to find a rank m approximation X̂ (where m < n) which minimizes the sum
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Figure 1: PCA maximizes the variance of the observations (on left), while an informed
projection minimizes variance of projections from observations belonging to the same set.

squared distortion with respect to X . It does this by identifying the m orthogonal directions
in which X exhibits the greatest variance, corresponding to the m largest eigenvectors C =
[C1, . . . ,Cm]. X can then be projected onto the hyperplane defined by C as

X̂ = C(CTC)−1CT X . (1)

Although not strictly a generative model, PCA offers a probabilistic interpretation: C rep-
resents a maximum likelihood model of the data under the assumption that X consists of
(Gaussian) noise-corrupted observations taken from linear combinations of m sources in an
n-dimensional space. The values for X̂ then represent maximum likelihood estimates of the
mixtures responsible for the corresponding values in X .

Roweis [13] described an efficient iterative technique for identifying C using an EM pro-
cedure. Beginning with an arbitrary guess for C, the latent representation of X is computed

Y = (CTC)−1CT X (2)

after which C is updated to maximize the estimated likelihoods

C = XY T (YY T )−1. (3)

Equations 2 and 3 are iterated until convergence (typically less than 10 iterations), at which
time the sum squared error of X̂’s approximation to X will have been minimized.

2.2 Informed projections

PCA only penalizes according to squared distance of an observation xi from its projection
x̂i. Given a Gaussian noise model, x̂i is the maximum likelihood estimate of xi’s “source,”
which is the only constraint with which PCA is concerned.

If we believe that a set of observations Si = {x1,x2, . . . ,xn} have a common cause, then they
should share a common source. For a hyperplane defined by eigenvectors C, the maximum
likelihood source is the mean of Si’s projections onto C, denoted Si. As such, the likelihood
should be penalized not only on the basis of the variance of observations around their
projections

(

∑ j ||x j − x̂ j||
2
)

, but also the variance of the projections around their set means
(

∑i ∑x j∈Si
||x̂ j −Si||

2
)

.

These two penalty terms may be at odds with each other, so we must introduce a hyperpa-
rameter β representing how much weight to place on accurately reproducing the original
observations and how much to place on preserving the integrity of the known sets:

Eβ = (1−β)∑
j
||x j − x̂ j||

2 +β∑
i

∑
x j∈Si

||x̂ j −Si||
2. (4)



When β = 0.5, Equation 4 is equivalent to minimizing ∑i ∑x j∈Si
||x j − Si||

2 under the as-
sumption that all otherwise unaffiliated xi are members of their own singleton sets. This is
just the squared distance from each observation to its projected cluster mean, which appears
to be the criterion CI-LSI minimizes by averaging documents.

2.3 Finding an informed projection

The error criterion in 4 may be efficiently optimized with an expectation-maximization
(EM) procedure based on Roweis’ EMPCA [13], alternately computing estimated sources
x̂ and maximizing the likelihoods of the observed data given those sources.

The likelihood of a set is maximized by minimizing the variance of projections from mem-
bers of a set around their mean. This is at odds with the efforts of PCA to maximize
likelihood by maximizing the variance of projections from the data set at large. We can
make these forces work together by adding a “complement set” S̃i for each set Si such that
the variance of Si’s projections is minimized by maximizing the variance of S̃i’s projections.

The complement set may be determined analytically, but can also be computed efficiently
as an extra step between the “E” and “M” steps of the EM iteration. Given an observation
x j ∈ Si, the complement for x j may be computed in terms of its projection x̂ j onto the
hyperplane and Si, the mean of the set.

Figure 2: Location of a point’s complement x̃ j with respect to its mean set projection Si
and the current hyperplane.

In order to “pull” the current hyperplane in the direction that will minimize x j’s distance
from the set mean, x̃ j must be positioned at a distance of ||x j − x̂ j|| from the hyperplane
such that its projection lies along line from Si to x̂ j at a distance from Si equal to ||x j − x̂ j||.
With some geometric manipulation (Figure 2), it can be shown that

x̃ j = Si +(x̂ j −Si)
||x̂ j − x||

||x̂ j −Si||
+(x̂ j − x)

||x̂ j −Si||

||x̂ j − x||
.

For efficiency, it is worth noting that by subtracting each set’s mean from its constituent
observations, all sets may be combined into a single zero-mean “superset” S̃ from which
complements are computed.

Once the complement set has been computed, it can be appended to the original observa-
tions a to create a joint data set, denoted X+ = [X |S̃], and the “M” step of the EM procedure
is continued as before:1

Y = (CTC)−1CT X+, C = X+Y T (YY T )−1. (5)

Applying β to the optimization is straightforward – if we preprocess the data by subtracting
the mean of the observations (as is standard for PCA), the effect of each observation is to

1Since S̃i depends on the projections, and therefore the position of the hyperplane, it must be
recomputed with each iteration.



apply a “torque” to the current hyperplane around the origin. By multiplying all coordinates
of an observation by the same scalar, we scale the torque applied by the same amount. As
such, we can trade off the weight attached to enforcing the sets against the weight attached
to reconstructing the original data by multiplying S̃ and X by β and 1−β respectively:

X+
β = [(1−β)X |β · S̃]

3 Experiments

I examined the effect of “informing” projections on three data sets from two domains.
The first two were text data sets taken from the WebKB project and the “20 newsgroups”
data set. The third data set consisted of acoustic features from recorded music. Finally, I
examine the effect of adding set information to the joint probabilistic model described by
Cohn and Hofmann [3].

3.1 WebKB data

The first set of experiments began with a subset of the WebKB data set [4]. Using Rain-
bow [9], I tokenized 1000 randomly-selected documents, stripping out HTML and digits,
and kept the 1000 terms with highest class-dependent information gain (the reduced vo-
cabulary greatly decreased processing times). The result was 1000 documents with 1000
features, where feature fi, j represented the frequency with which term j occurred in docu-
ment xi. Sets were constructed from the categories provided with each document.

The experiments varied both the fraction of the training data for which set associations were
provided (0-1) and the weight given to preserving those sets (also 0-1). For each combina-
tion, I ran 40 trials, each using a randomized split of 200 training documents and 100 test
documents. Accuracy was evaluated based on leave-one-out nearest neighbor classification
over the test set.2
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Figure 3: Nearest neighbor classification of WebKB data, where a 5D PCA of document
terms has been informed by web page category-determined sets (40 independent train/test
splits). The fraction of observations that have been given set assignments is varied from 0
to 1 (left plot), as is β, the weight attached to preserving set associations (right plot).

Figure 3 summarizes the results of these experiments. As expected, the more documents
that had set associations, the greater the improvement in classification accuracy, but this

2Obviously, simple nearest neighbor is far from the most effective classification technique for
this domain. But the point of the experiment is to evaluate to what degree informing a projection
preserves or improves topic locality, which nearest neighbor classifiers are well-suited to measure.



improvement was only evident for 0.3≤ β≤ 0.7; below 0.3, the sets were not given enough
weight to make a difference, while above 0.7 there is a rapid deterioration in accuracy.

3.2 20 Newsgroups
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Figure 4: Five categories from 20
newsgroups data set, where a 5D
PCA of document terms has been
informed by source category (30
train/test splits, for 0 < β < 1).

The second set of experiments also used a stan-
dard text classification corpus, but with an unre-
stricted vocabulary. Beginning with the documents
of the 20 newsgroups data set, I again prepro-
cessed the documents as above with Rainbow, but
this time kept the entire vocabulary (27214 unique
terms), instead of preselecting maximally informa-
tive terms.

Because of the additional running time required to
handle the complete vocabularies, the experiments
used all set labels and only varied the weighting.
Thirty independent training and test sets of 100
documents each were run for 0 ≤ β ≤ 1, and as
before, accuracy was evaluted in terms of leave-
one-out classification error on the test set.

Figure 4 summarizes the results of these experi-
ments. The characteristic learning curve is very
similar to that for the WebKB data — an interme-
diate set weighting yields significantly better performance than the purely supervised or
unsupervised cases. There is, however, one notable distinction: in these experiments, there
is much less variation in accuracy for large values of β — it almost appears that there are
three stable regions of performance.

3.3 Album recognition from acoustic features

The third test used a proprietary data set of acoustic properties of recorded music. The data
set contained 11252 recorded music tracks from 939 albums. Each observation consisted of
85 highly-processed acoustic features extracted automatically via digital signal processing.

The goal of this experiment was to determine whether informing a projected model could
improve the accuracy with which it could identify tracks from the same album. Recalling
Platt’s playlist selection problem [11], this can serve as a proxy for estimating how well the
model can predict whether two tracks “belong together” by the subjective measure of the
artist who created the album.

For these experiments, I selected the first 8439 tracks (3/4 of the data) for training, assign-
ing each track to be a member of the set defined by the album it came from. Many tracks
appeared on multiple albums (“Best of...” and soundtrack collections). The remaining 2813
tracks were used as test data.

The 85 dimensional features were projected down into a 10 dimensional space, inform-
ing the projection with sets defined by tracks from the same album. The relatively low
dimension of the problem permitted also running OPCA on the data set for comparison.
As above, I measured the frequency with which each test track had another track from the
same album as its nearest neighbor when projected down into this same space.

While the improvements in performance are not as striking as those from the previous ex-
periments, they are nonetheless significant (Table 1). One reason for the meager improve-
ment may be that the features from which the projections were computed had already been



weight β = 0.0 β = 0.5 β = 1.0 OPCA
accuracy 0.1070 0.1241 0.0551 0.1340
ratio 0.3859 0.3223 0.3414 0.3144

Table 1: Album recognition results using 2813 test tracks from 316 albums. For each
weighting β, “accuracy” is the fraction of times which the closest track to a test track came
from the same album; “ratio” indicates the average ratio of intra-album distances to inter-
album distances in the test set. In all cases, informing the projection with a weight of
β = 0.5 increases the accuracy and decreases the ratio of the model.

manually optimized for classification accuracy. Interestingly, OPCA slightly outperforms
the informed projection for both criteria on this problem.

3.4 Content, context and connections

Prior work [3] discussed building joint probabilistic models of a document base, using both
the content of the documents and the connections (citations or hyperlinks) between them.
A document base frequently contains context as well, in the form of documents from the
same source or by the same author. Informed projection provides a way for us to inject this
third form of information and further improve our models.

Figure 5 summarizes the results of using set information to “inform” the joint content+link
models discussed in the previous paper. That work used a multinomial model for its ap-
proximation, so we can not use the equations defined in Section 2.3. Instead, we can make
use of the observation of Section 1.1 to approximate the informing process by merging
documents from the same set. Figure 5 illustrates that this process complements the earlier
content+connections approach, providing a joint model of document content, context and
connections.
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Figure 5: (left) Classification accuracy of informed vs. uninformed models of separate and
joint models of document content and connections, using the WebKB dataset. (right) Effect
of adding more document context in the form of set membership information on the Cora
data set. See Cohn and Hofmann [3] for details.

4 Discussion and future work

The experiments so far indicate that adding set information to a low rank approximation
does improve the quality of a model, but only to the extent that the information is used
in conjunction with the unsupervised information already present in the data set. The im-
provement in performance is evident for content models (such as LSA), connection models,
and joint models of content and connections.



4.1 Future work

Beyond experiments that to clarify the effect of β on model fitness, there are many obvious
directions for future work. The first is further exploration on the relationship between
informed PCA and and the variants of MDA discussed in Section 1.1. While the differences
are mathematically straightforward, the effect of sum-vs.-ratio criteria bears further study.

A second broad area for future work is the application of the techniques described here to
richer low rank approximation models. While this paper considered the effect of informing
PCA, it would be fruitful to examine both the process and effect of informing multinomial-
based models [3, 6], fully-generative models [1] and local linear embeddings [14].

A third area for exploration is the study of potential applications for this approach, which
include improved relevance modeling, directed web crawling, and personalized search and
recommendation across a wide variety of media.
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