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Abstract

We introduce a novel learning algorithm for binary classification
with hyperplane discriminants based on pairs of training points
from opposite classes (dyadic hypercuts). This algorithm is further
extended to nonlinear discriminants using kernel functions satisfy-
ing Mercer’s conditions. An ensemble of simple dyadic hypercuts is
learned incrementally by means of a confidence-rated version of Ad-
aBoost, which provides a sound strategy for searching through the
finite set of hypercut hypotheses. In experiments with real-world
datasets from the UCI repository, the generalization performance
of the hypercut classifiers was found to be comparable to that of
SVMs and k-NN classifiers. Furthermore, the computational cost
of classification (at run time) was found to be similar to, or bet-
ter than, that of SVM. Similarly to SVMs, boosted dyadic kernel
discriminants tend to maximize the margin (via AdaBoost). In
contrast to SVMs, however, we offer an on-line and incremental
learning machine for building kernel discriminants whose complex-
ity (number of kernel evaluations) can be directly controlled (traded
off for accuracy).

1 Introduction

This paper introduces a novel algorithm for learning complex binary classifiers by
superposition of simpler hyperplane-type discriminants. In this algorithm, each of
the simple discriminants is based on the projection of a test point onto a vector
joining a dyad, defined as a pair of training data points with opposite labels. The
learning algorithm itself is based on a real-valued variant of AdaBoost [7], and the
hyperplane classifiers use kernels of the type used, e.g., by support vector machines
(SVMs) [9] for mapping linearly non-separable problems to high-dimensional feature
spaces.

When the concept class consists of linear discriminants (hyperplanes), this amounts
to using a hyperplane orthogonal to the vector connecting the point in a dyad.
We shall refer to such a classifier as a hypercut. By applying the same notion of
linear hypercuts to a nonlinearly transformed feature space obtained by Mercer-
type kernels [3], we are able to implement nonlinear kernel discriminants similar in
form to SVMs.



In each iteration of AdaBoost, the space of all dyadic hypercuts is searched. It can
be easily shown that this hypothesis space spans the subspace of the data and that it
must include the optimal hyperplane discriminant. This notion is readily extended
to non-linear classifiers obtained by kernel transformations, by noting that in the
feature space, the optimal discriminant resides in the span of the transformed data.
Therefore, for both linear and nonlinear classification, searching the space of dyadic
hypercuts forms an efficient strategy for exploring the space of all hypotheses.

1.1 Related work

The most general framework to consider is the theory of potential functions for
pattern classification [1] in which potential fields1 of the form

H(x) =
∑

i

αiyiK(x,xi) (1)

are thresholded to predict classification labels, ŷ = sign(H(x)). In a probabilistic
kernel regression framework recently proposed in [5], the coefficients α that minimize
the classification error are obtained by maximizing

J(α) = −
1

2

∑

i,j

αiαjyiyjK(xi,xj) +
∑

i

F (αi), (2)

where the potential function F is concave and continuous (corresponding to positive
semi-definite kernels). This framework subsumes SVMs, which correspond to the
simplest case F (α) = α. Generalized linear models [6] can also be shown to be
members of this class by considering logistic regression where F (α) becomes the
binary entropy function and K is related to the covariance function of a Gaussian
process classifier for the GLM’s intermediate variables.

In this paper we propose and design classifiers with dyadic discriminants, which
have potential functions of the form

H(x) =
∑

t

αtK(x,xp
t ) − αtK(x,xn

t ), (3)

where xp and xn are positively and negatively labeled data, respectively. The coef-
ficients αt are determined not by minimizing a convex quadratic function J(α) but
rather by selecting an optimal classifier in the t-th iteration of AdaBoost. Thus the
potential function is constrained to the form of a weighted sum of dyadic hypercuts,
or differences of kernel functions. Another way to view this is to think of a pair of
opposite – polarity “basis vectors” sharing the same coefficient αt.

The most closely related potential function technique to ours is that of SVMs [9],
where the classification margin (and thus the bound on generalization) is maxi-
mized by a simultaneous optimization with respect to all of the training points.
However, there are important differences between SVMs and our iterative hypercut
algorithm. In each step of the boosting process, we do not maximize the margin
of the resulting strong classifier directly, which makes for a much simpler optimiza-
tion task. Meanwhile, we are assured that with AdaBoost we tend to maximize
(although in an asymptotic sense) the margin of the final classifier [7].

The most important difference that distinguishes our method from SVMs (and,
by extension, from the general kernel discriminant family described above) is that

1The physical analogy here is to the linear superposition of electrostatic charges of
strength αi, polarity yi and location xi with distance defined by the kernel K.



the points in our dyads are not typically located near the decision boundary, as
is the case with support vectors. As a result, the final set of “basis vectors” used
by the boosted strong classifier can be viewed as a representative subset of the
data (i.e. those points needed for classification), whereas with SVMs the support
vectors are simply the minimal number of training points needed to build (support)
the decision boundary and are almost certainly not “typical” or high-likelihood
members of either class.2

The classification complexity of a kernel-based classifier — the cost of classifying
a test point — depends on the number of kernel function evaluations on which
the classifier is based. In the case of SVMs, there is (usually) no direct way of
controlling this number (the quadratic programming solution will automatically
determine all positive Lagrange multipliers). In our boosted hypercut algorithm,
however, the number of dyadic “basis vectors”, and therefore of the required kernel
evaluations, is determined by the number of iterations of the boosting algorithm and
can therefore be controlled. Note that we are not referring here to the complexity
of training classifiers here, only to their run-time computational cost.

2 Methodology

Consider a binary classification task where we are given a training set of vectors
T = {x1, . . . ,xM} where x ∈ RN , with corresponding labels {y1, . . . , yM} where
y ∈ {−1, +1}. Let there be Mp samples with label +1 and Mn samples with label
−1 so that M = Mp + Mn. Consider a simple linear hyperplane classifier defined
by a discriminant function of the form

f(x) = 〈w · x〉 + b (4)

where sign(f(x)) ∈ {+1,−1} gives the binary classification.

Under certain assumptions, Gaussianity in particular, the optimal hyperplane, spec-
ified by the projection w∗ and bias b∗, is easily computed using standard statisti-
cal techniques based on class means and sample covariances for linear classifiers.
However, in the absence of such assumptions, one must resort to searching for the
optimal hyperplane. When searching for w∗, an efficient strategy is to consider only
hyperplanes whose surface normal is parallel to the line joining a dyad (xi,xj):

wij =
xi − xj

c
, yi 6= yj , i < j (5)

where yi 6= yj by definition, i < j for uniqueness, and c is a scale factor. The
vector wij is parallel to the line segment connecting the points in a dyad. Setting
c = ‖xi − xj‖ makes wij a unit-norm direction vector.

The hypothesis space to be searched consists of | {wij} |= MpMn hypercuts, each
having a free bias parameter bij which is typically determined by minimizing the
weighted classification error (as we shall see in the next section). Each hypothesis
is then given by the sign of the discriminant as in (4):

hij(x) = sign(〈wij · x〉 + bij) (6)

Let {hij} = {wij , bij} denote the complete set of hypercuts for a given training
set. Strictly speaking, this set is uncountable since bij is continuous and arbitrary.
However, since we always select one bias parameter for each hypercut wij , we do
in fact end up with only MpMn classifiers.

2Although unrelated to our technique, the Relevance Vector machine [8] is another
kernel learning algorithm that tends to produce “prototypical” basis vectors in the interior
as opposed to the boundary of the distributions.



2.1 AdaBoost

The AdaBoost algorithm [4] provides a practical framework for combining a number
of weak classifiers into a strong final classifier by means of linear combination and
thresholding. AdaBoost works by maintaining over the training set an iteratively
evolving distribution (weights) Dt(i) based on the difficulty of classification (i.e.
points which are harder to classify have greater weight). Consequently, a “weak”
hypothesis h(x) : x → {+1,−1} will have classification error εt weighted by
Dt. In our case, in each iteration t, we select from the complete set of MpMn

hypercuts {hij} one which minimizes εt. The data are then re-weighted based on
their (mis)classification to obtain an updated distribution Dt+1.

The final classifier is a linear combination of the selected weak classifiers ht and has
the form of a weighted “voting” scheme

H(x) = sign

(

T
∑

i=1

αtht(x)

)

(7)

where αt = 1

2
ln( 1−εt

εt

). In [7] a framework was developed where ht(x) can be

real-valued (as opposed to binary) and is interpreted as a “confidence-rated predic-
tion.” The sign of ht(x) is the predicted label while the magnitude | ht(x) | is the
confidence. For such real-valued classifiers we have

αt =
1

2
ln

(

1 + rt

1 − rt

)

(8)

where the “correlation” rt =
∑

i Dt(i) yi ht(xi) is inversely related to the error by
εt = (1 − rt)/2.

2.2 Nonlinear Hypercuts

The logical extension beyond the boosted linear dyadic discriminants described in
the previous section is that of nonlinear discriminants using positive definite kernels
as suggested in [3] for use with SVMs. In the resulting “reproducing kernel Hilbert
spaces”, dot products between high-dimensional mappings Φ(x) : X → F are easily
evaluated using Mercer kernels

k(x,x′) = 〈Φ(x) · Φ(x′)〉. (9)

This has the desirable property that any algorithm based on dot products, e.g.
our linear hypercut classifier (6), can first nonlinearly transform its inputs (using
kernels) and implicitly perform dot-products in the transformed space. The pre-
image of the linear hyperplane solution back in the input space is thus a nonlinear
hypersurface.

Applying the above kernel property to the hypercut concept (5) we can rewrite it
in nonlinear form by considering the linear hypercut in the transformed space F
where the projection operator is

wij = Φ(xi) − Φ(xj), yi 6= yj , i < j (10)

(we have absorbed the scale constant c in (5) into wij for simplicity in this case).3

Due to the implicit nature of the nonlinear mapping, we can not directly evaluate
wij . However, we only need its dot product with the transformed input vectors

3Since the optimal projection w
∗
ij must lie in the span of {Φ(xi)}, we should restrict

the search for an optimal hyperplane accordingly, e.g. by considering pair-wise hypercuts.



Φ(x). Considering the linear discriminant (4) and substituting the above we obtain

fij(x) = 〈(Φ(xi) − Φ(xj)) · Φ(x)〉 + bij , (11)

which by applying the kernel property (9) is equivalent to

fij(x) = k(x,xi) − k(x,xj) + bij (12)

Note that fij now represents a single dyadic term in the potential function intro-
duced in (3). The binary-valued hypercut classifier is given by a simple thresholding

hij(x) = sign(fij(x)). (13)

A “confidence-rated” classifier with output in the range [−1, +1] can be obtained by
passing fij through a bipolar sigmoidal nonlinearity such as a hyperbolic tangent

hij(x) = tanh (βfij(x)) (14)

where β determines the “slope” of the sigmoid. We note that in order to obtain
a continuous-valued hypercut classifier that suitably occupies the range [−1, +1] it
may be necessary to experiment and adjust both constants c and β.

The final classifier constructed by AdaBoost, following (7), is given by

H(x) = sign

(

T
∑

t=1

αt tanh
(

β
[

k(x,xt
i) − k(x,xt

j) + bt
ij

])

)

, (15)

where we have superscripted the elements of fij selected in iteration t of boosting.
Note that besides the monotonic sigmoid and offset transformation, this form is
essentially a (nonlinear) equivalent of the dyadic potential function of (3).

If we assume, without loss of generality, that an equal number N/2 of d-dimensional
training points is available from each class, defining O(N 2) hypercuts. The values
of fij(x) for each hypercut and each training point (12) can be computed only once,
typically in O(d), and used in every iteration of the algorithm, making the setup
cost for the algorithm O(dN 3). Each iteration requires examination of all fij(xk)
and takes O(N3). To summarize, the cost of learning a classifier with K dyads is
O
(

(d + K)N3
)

. It is important to note that both the setup step and the search
for an optimal hypercut in each iteration are naturally parallelizable, leading to a
reduction in time linear in the number of processors.

3 Experiments

Before applying our algorithm to standard benchmarks, we illustrate a simple 2D
example of nonlinear boosted dyadic hypercuts on a “toy” problem. Consider a
classification task on the dataset of 20 points (10 for each class) shown in Figure 1.
The hypercuts algorithm (using Gaussian kernels) was able to separate the classes
using two iterations (two cuts) as shown in Figure 1(a). Note how the dyads of
training points (connected by dashed lines) define the discriminant boundary. For
comparison, we used an SVM with Gaussian kernels on the same dataset, as shown
in Figure 1(b). Although the SVM has a wider margin, the same would be expected
from our algorithm with additional rounds of boosting.

The computational cost of classifying a point can be directly compared in terms of
the number of required kernel evaluations in (2), which dominate the computation
for high-dimensional data and kernels like Gaussians. For SVM, this is the number
of support vectors. For hypercuts, this is the number of distinct training points



(a) (b)

Figure 1: A toy problem: classification based on (a) hypercuts (2 dyads) (b) SVM (4
support vectors).

in the selected dyads. After n rounds of boosting this number is bounded by 2n,
since a point can participate in multiple dyads. For instance, the SVM in Figure 1
requires 4 kernel evaluations, compared to 3 for the boosted hypercuts.

3.1 Experiments with real data sets

We evaluated the performance of the dyadic hypercuts algorithm on a number of
real-world data sets from the UCI repository [2], and compared the performance
to that of two established classification methods: SVM with Gaussian RBF kernel
and k-Nearest Neighbor (k-NN). We chose sets large enough for reasonable train-
ing/validation/test partitioning, and that represent binary (or easily converted to
binary) classification problems.

Dataset N d k-NN SVM #SV Hypercuts #k.ev.
Heart 90 13 .196 ±.042 .202 ±.038 62 ±10 .202 ±.030 50 ±12

Ionosphere 120 34 .168 ±.024 .064 ±.018 73 ±7 .083 ±.022 63 ±7

WBC 200 9 .034 ±.011 .032 ±.008 50 ±26 .028 ±.007 30 ±12

WPBC 65 32 .250 ±.024 .243 ±.006 63 ±3 .253 ±.025 41 ±5

WDBC 190 30 .044 ±.015 .035 ±.013 67 ±15 .038 ±.014 47 ±12

Wine 60 13 .053 ±.030 .032 ±.022 40 ±9 .040 ±.026 23 ±4

Spam 150 57 .159 ±.025 .123 ±.016 101 ±8 .116 ±.019 73 ±15

Sonar 70 60 .227 ±.041 .226 ±.037 66 ±3 .202 ±.045 52 ±5

Pima 200 8 .267 ±.024 .244 ±.014 129 ±7 .260 ±.017 110 ±16

Table 1: The results of the experiments described in Section 3.1. N is the size of the
training set, d the dimension, #SV the number of support vectors for the SVM, and #k.ev.
the number of kernel evaluations required by a boosted hypercuts classifier. Means and
standard deviations in 30 trials are reported for each data set. WBC,WPBC,WDBC are
Wisconsin Breast Cancer, Prognosis and Diagnosis data sets, respectively.

In each experiment, the data set was randomly partitioned into training, validation
and test sets of similar sizes. The validation set was used to “tune” the parameters
of each of the classifiers (k for k-NN, σ for RBF kernels of SVMs and hypercuts),
by choosing from a suitable range the parameter value with lowest error on the vali-
dation set. Each of the three classifiers was then trained with the chosen parameter
on the training set, and tested on the test set.

For each data data set the above experiment was repeated 30 times. The columns
of Table 1, left to right, show the following, with means and standard deviations
over the 30 trials for each dataset: size of the training set, dimension, the test error
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Dataset 10% 25% 50%
Heart .202 .200 .197
Ion. .178 .113 .094
WBC .028 .028 . 028
WPBC .302 .269 .266
WDBC .365 .384 .383
Wine .064 .051 .043
Spam .142 .124 .117
Sonar .248 .233 .214
Pima .269 .268 .263

Figure 2: An example of the progress of training
(dotted line) and test (solid line) error in a run of
hypercuts algorithm with RBF kernel on Spam data.
The number of kernel evaluations in the combined
classifier is shown for indicated points in the run.
The dashed line shows the test error of the SVM
with RBF kernel.

Table 2: Test error as a function
of number of kernel evaluations al-
lowed by the user; the percentage
values are relative to the number
of SVs in each experiment. Aver-
aged over 30 trials for each data
set.

of k-NN, the test error of SVM, the number of support vectors, the test error of
hypercuts, and the number of kernel evaluations in the final hypercuts classifier.

The size of the hypercuts classifier can be controlled via the number of AdaBoost
iterations, thus affecting the accuracy of the classifier. In our experiments boosting
was stopped after a prolonged plateau in the training error was observed; in some
cases, further continuation of boosting could lead to better results.

3.2 Discussion

The most important conclusion from these empirical results is that for all data sets,
the RBF boosted dyadic hypercuts achieve test performance statistically equivalent
to that of SVMs4, and usually better than that of k-NN classifiers, while the com-
plexity of the trained classifier is typically lower (in some cases, which appear in
bold in Table 1, the difference in complexity is significant).

In addition, our experiments demonstrate the trade-off between the complexity and
accuracy of the hypercuts. Figure 2 shows an example run of hypercuts algorithm
on Spam data set, with 150 training points. After 24 iterations, the test error of
the final classifier becomes consistently lower than that of SVM trained on the same
training set, which found 96 support vectors. At that point the classifier requires
27 kernel evaluations (about 28% of the number of SVs). The following 115 itera-
tions achieve further improvement of only 1.8% in test error, while increasing the
required number of kernel evaluations to 78. Here the automatic criterion stopped
the AdaBoost after no significant improvement in training error was observed for 25
iterations. But the user can instead specify the desired bound on the complexity of
the classifier. Table 2 shows the behavior of test error as a function of the number
of kernel evaluations by the classifier, averaged over all 30 trials. For some data
sets, e.g. Heart and WBC, the hypercuts classifier with only 10% of the number
of kernel evaluations in an SVM already achieves comparable test error.

4i.e. the difference of the means is within one standard deviation from both sides



4 Conclusions

The contribution of this paper is two-fold. First, we proposed a family of simple
discriminants (hypercuts), based on pairs of training points from opposite classes
(dyads), and extended this family using a nonlinear mapping with Mercer-type
kernels. Second, we have designed a greedy selection algorithm based on boosting
with confidence-rated (real-valued) hypercut classifiers with continuous output in
the interval [-1,1].

This is a new kernel based approach to classification. We have shown that this
approach performs on par with SVMs, without having to solve large QP problems.
In contrast, our algorithm allows the user to trade off the classifier’s computational
complexity for its accuracy, and benefits from AdaBoost’s exponential error conver-
gence and the assurance of asymptotic margin maximization.

The generalization performance of our algorithm was evaluated on a number of data
sets from the UCI repository, and demonstrated to be comparable to that of estab-
lished state-of-the-art algorithms (SVMs, k-NN), often with reduced classification
time and reduced classifier size. We emphasize this performance advantage, since in
practical applications it is often desirable to minimize complexity even at the cost
of increased training time.

We are currently looking into optimal strategies for sampling the hypothesis space
(MpMn possible hypercuts) based on the distribution Dt(i) and forming hypercuts
that are not necessarily based on training samples but rather, for example, on cluster
centroids or other points derived from the input distribution. This has the potential
to dramatically reduce the computational cost of learning in the boosted hypercuts
algorithm, thus making it even more attractive for a practitioner.
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