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Abstract 

This paper presents two new formulations of multiple-instance 
learning as a maximum margin problem. The proposed extensions 
of the Support Vector Machine (SVM) learning approach lead to 
mixed integer quadratic programs that can be solved heuristically. 
Our generalization of SVMs makes a state-of-the-art classification 
technique, including non-linear classification via kernels, available 
to an area that up to now has been largely dominated by special 
purpose methods. We present experimental results on a pharma­
ceutical data set and on applications in automated image indexing 
and document categorization. 

1 Introduction 

Multiple-instance learning (MIL) [4] is a generalization of supervised classification 
in which training class labels are associated with sets of patterns, or bags, instead of 
individual patterns. While every pattern may possess an associated true label, it is 
assumed that pattern labels are only indirectly accessible through labels attached to 
bags. The law of inheritance is such that a set receives a particular label, if at least 
one of the patterns in the set possesses the label. In the important case of binary 
classification, this implies that a bag is "positive" if at least one of its member 
patterns is a positive example. MIL differs from the general set-learning problem in 
that the set-level classifier is by design induced by a pattern-level classifier. Hence 
the key challenge in MIL is to cope with the ambiguity of not knowing which of the 
patterns in a positive bag are the actual positive examples and which ones are not. 

The MIL setting has numerous interesting applications. One prominent applica­
tion is the classification of molecules in the context of drug design [4]. Here, 
each molecule is represented by a bag of possible conformations. The efficacy of 
a molecule can be tested experimentally, but there is no way to control for indi­
vidual conformations. A second application is in image indexing for content-based 
image retrieval. Here, an image can be viewed as a bag of local image patches [9] 
or image regions. Since annotating whole images is far less time consuming then 
marking relevant image regions, the ability to deal with this type of weakly anno­
tated data is very desirable. Finally, consider the problem of text categorization for 
which we are the first to apply the MIL setting. Usually, documents which contain 
a relevant passage are considered to be relevant with respect to a particular cate-



gory or topic, yet class labels are rarely available on the passage level and are most 
commonly associated with the document as a whole. Formally, all of the above 
applications share the same type of label ambiguity which in our opinion makes a 
strong argument in favor of the relevance of the MIL setting. 

We present two approaches to modify and extend Support Vector Machines (SVMs) 
to deal with MIL problems. The first approach explicitly treats the pattern labels 
as unobserved integer variables, subjected to constraints defined by the (positive) 
bag labels. The goal then is to maximize the usual pattern margin, or soft-margin, 
jointly over hidden label variables and a linear (or kernelized) discriminant func­
tion. The second approach generalizes the notion of a margin to bags and aims at 
maximizing the bag margin directly. The latter seems most appropriate in cases 
where we mainly care about classifying new test bags, while the first approach 
seems preferable whenever the goal is to derive an accurate pattern-level classifier. 
In the case of singleton bags, both methods are identical and reduce to the standard 
soft-margin SVM formulation. 

Algorithms for the MIL problem were first presented in [4, 1, 7]. These methods (and 
related analytical results) are based on hypothesis classes consisting of axis-aligned 
rectangles. Similarly, methods developed subsequently (e.g., [8, 12]) have focused 
on specially tailored machine learning algorithms that do not compare favorably in 
the limiting case of the standard classification setting. A notable exception is [10]. 
More recently, a kernel-based approach has been suggested which derives MI-kernels 
on bags from a given kernel defined on the pattern-level [5]. While the MI-kernel 
approach treats the MIL problem merely as a representational problem, we strongly 
believe that a deeper conceptual modification of SVMs as outlined in this paper is 
necessary. However, we share the ultimate goal with [5], which is to make state-of­
the-art kernel-based classification methods available for multiple-instance learning. 

2 Multiple-Instance Learning 

In statistical pattern recognition, it is usually assumed that a training set of la­
beled patterns is available where each pair (Xi, Yi) E ~d X Y has been generated 
independently from an unknown distribution. The goal is to induce a classifier, i.e., 
a function from patterns to labels ! : ~d --+ y. In this paper, we will focus on 
the binary case of Y = {-I, I}. Multiple-instance learning (MIL) generalizes this 
problem by making significantly weaker assumptions about the labeling informa­
tion. Patterns are grouped into bags and a label is attached to each bag and not 
to every pattern. More formally, given is a set of input patterns Xl, ... , Xn grouped 
into bags B l , ... , B m , with BI = {Xi: i E I} for given index sets I ~ {I, ... , n} (typ­
ically non-overlapping). With each bag B I is associated a label YI. These labels 
are interpreted in the following way: if YI = -1, then Yi = -1 for all i E I, i.e., no 
pattern in the bag is a positive example. If on the other hand YI = 1, then at least 
one pattern Xi E BI is a positive example of the underlying concept. Notice that 
the information provided by the label is asymmetric in the sense that a negative 
bag label induces a unique label for every pattern in a bag, while a positive label 
does not. In general, the relation between pattern labels Yi and bag labels YI can be 
expressed compactly as YI = maxiEI Yi or alternatively as a set of linear constraints 

'"' Yi + 1 ~ -2- ;::: 1, VI s.t. YI = 1, and Yi = -1, VI s.t. YI = -1. (1) 
iEI 

Finally, let us call a discriminant function! : X --+ ~ MI-separating with respect to 
a multiple-instance data set if sgn maxiEI !(Xi) = YI for all bags BI holds. 
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Figure 1: Large margin classifiers for MIL. Negative patterns are denoted by "-" 
symbols, positive bag patterns by numbers that encode the bag membership. The 
figure to the left sketches the mi-SVM solution while the figure to the right shows 
the MI-SVM solution. 

3 Maximum Pattern Margin Formulation of MIL 

We omit an introduction to SVMs and refer the reader to the excellent books on this 
topic, e.g. [11]. The mixed integer formulation of MIL as a generalized soft-margin 
SVM can be written as follows in primal form 

1 
minmin -llwI12+CL~i (2) 
{v;} w,b,€ 2 . 

t 

mi-SVM 

s.t. Vi: Yi((w,xi)+b):::=:l-~i' ~i:::=:O, Yi E{-l,l},and (1) hold. 

Notice that in the standard classification setting, the labels Yi of training patterns 
Xi would simply be given, while in (2) labels Yi of patterns Xi not belonging to 
any negative bag are treated as unknown integer variables. In mi-SVM one thus 
maximizes a soft-margin criterion jointly over possible label assignments as well as 
hyperplanes. Figure 1 (a) illustrates this idea for the separable case: We are looking 
for an MI-separating linear discriminant such that there is at least one pattern from 
every positive bag in the positive halfspace, while all patterns belonging to negative 
bags are in the negative halfspace. At the same time, we would like to achieve the 
maximal margin with respect to the (completed) data set obtained by imputing 
labels for patterns in positive bags in accordance with Eq. (1). 

This is similar to the approach pursued in [6] and [3] for transductive inference. In 
the latter case, patterns are either labeled or unlabeled. Unlabeled data points are 
utilized to refine the decision boundary by maximizing the margin on all data points. 
While the labeling for each unlabeled pattern can be carried out independently in 
transductive inference, labels of patterns in positive bags are coupled in MIL through 
the inequality constraints. 

The mi-SVM formulation leads to a mixed integer programming problem. One has 
to find both the optimal labeling and the optimal hyperplane. On a conceptual level 
this mixed integer formulation captures exactly what MIL is about, i.e. to recover 
the unobserved pattern labels and to simultaneously find an optimal discriminant. 
Yet, this poses a computational challenge since the resulting mixed integer pro­
gramming problem cannot be solved efficiently with state-of-the-art tools, even for 
moderate size data sets. We will present an optimization heuristic in Section 5. 



4 Maximum Bag Margin Formulation of MIL 

An alternative way of applying maximum margin ideas to the MIL setting is to 
extend the notion of a margin from individual patterns to sets of patterns. It is 
natural to define the functional margin of a bag with respect to a hyperplane by 

II == YI max( (w, Xi) + b). (3) 
iEI 

This generalization reflects the fact that predictions for bag labels take the form 
YI = sgn maxiEI( (w, Xi) +b). Notice that for a positive bag the margin is defined by 
the margin of the "most positive" pattern, while the margin of a negative bag is de­
fined by the "least negative" pattern. The difference between the two formulations of 
maximum-margin problems is illustrated in Figure 1. For the pattern-centered mi­
SVM formulation , the margin of every pattern in a positive bag matters , although 
one has the freedom to set their label variables so as to maximize the margin. In 
the bag-centered formulation, only one pattern per positive bag matters, since it 
will determine the margin of the bag. Once these "witness" patterns have been 
identified, the relative position of other patterns in positive bags with respect to 
the classification boundary becomes irrelevant. Using the above notion of a bag 
margin, we define an MIL version of the soft-margin classifier by 

MI-SVM . 1 '" mm -llwl1 2 + C ~~I 
w , b ,~ 2 I 

(4) 

s.t. VI: YI mal x ( (w, Xi) + b) ::::: 1 - ~I, ~I ::::: O . 
• E 

For negative bags one can unfold the max operation by introducing one inequality 
constraint per pattern, yet with a single slack variable ~I. Hence the constraints on 
negative bag patterns, where YI = -1, read as -(W, Xi) - b::::: 1- ~I' Vi E I. 

For positive bags, we introduce a selector variable s(I) E I which denotes the 
pattern selected as the positive "witness" in BI. This will result in constraints 
(w, xs(I)) + b ::::: 1 - ~I. Thus we arrive at the following equivalent formulation 

1 
min min -llwl1 2 + C 2: ~I (5) 

s w,b,~ 2 I 

s.t. VI: YI = -1 /\ -(W,Xi) - b::::: 1- ~I, Vi E I, 

or YI=l /\ (w,xs(I))+b:::::1-~I' and6:::::0. (6) 

In this formulation, every positive bag BI is thus effectively represented by a single 
member pattern XI == xs(I). Notice that "non-witness" patterns (Xi, i E I with 
i =I- s(I)) have no impact on the objective. 

For given selector variables, it is straightforward to derive the dual objective function 
which is very similar to the standard SVM Wolfe dual. The only major difference 
is that the box constraints for the Lagrange parameters c¥ are modified compared 
to the standard SVM solution, namely one gets 

o ::; C¥I ::; C, for I s.t. YI = 1 and 0::; 2: C¥i ::; C, for I s.t. YI = -1. (7) 
iEI 

Hence, the influence of each bag is bounded by C. 

5 Optimization Heuristics 

As we have shown, both formulations, mi-SVM and MI-SVM, can be cast as mixed­
integer programs. In deriving optimization heuristics, we exploit the fact that for 



initialize Yi = YI for i E I 
REPEAT 

compute SVM solution vv , b for data set with imputed labels 
compute outputs Ii = (VV , Xi) + b for all xi in positive bags 
set Yi = sgn(fi) for every i E I, YI = 1 
FOR (every positive bag BI) 

END 

IF (LiEI( l + Yi)/2 == 0) 
compute i* = arg maxiEI Ii 
set Yi* = 1 

END 

WHILE (imputed labels have changed) 
OUTPUT (vv, b) 

Figure 2: Pseudo-code for mi-SVM optimization heuristics (synchronous update). 

initialize XI = L iE I xillII for every positive bag BI 

REPEAT 
compute QP solution vv,b for data set with 

positive examples {XI : YI = I} 
compute outputs Ii = (VV,Xi) + b for all xi in positive bags 
set XI = Xs(I) , 8(I) = arg maxiEI Ii for every I, YI = 1 

WHILE (selector variables 8(1) have changed) 
OUTPUT (vv, b) 

Figure 3: Pseudo-code for MI-SVM optimization heuristics (synchronous update). 

given integer variables, i.e. the hidden labels in mi-SVM and the selector variables 
in MI-SVM, the problem reduces to a QP that can be solved exactly. Of course, all 
the derivations also hold for general kernel functions K . 

A general scheme for a simple optimization heuristic may be described as follows. 
Alternate the following two steps: (i) for given integer variables, solve the associated 
QP and find the optimal discriminant function, (ii) for a given discriminant, update 
one, several, or all integer variables in a way that (locally) minimizes the objective. 
The latter step may involve the update of a label variable Yi of a single pattern in mi­
SVM, the update of a single selector variable 8(I) in MI-SVM, or the simultaneous 
update of all integer variables. Since the integer variables are essentially decoupled 
given the discriminant (with the exception of the bag constraints in mi-SVM), this 
can be done very efficiently. Also notice that we can re-initialize the QP-solver 
at every iteration with the previously found solution, which will usually result in 
a significant speed-up. In terms of initialization of the optimization procedure, 
we suggest to impute positive labels for patterns in positive bags as the initial 
configuration in mi-SVM. In MI-SVM, XI is initialized as the centroid of the bag 
patterns. Figure 2 and 3 summarize pseudo-code descriptions for the algorithms 
utilized in the experiments. 

There are many possibilities to refine the above heuristic strategy, for example, by 
starting from different initial conditions, by using branch and bound techniques to 
explore larger parts of the discrete part of the search space, by performing stochas­
tic updates (simulated annealing) or by maintaining probabilities on the integer 
variables in the spirit of deterministic annealing. However, we have been able to 
achieve competitive results even with the simpler optimization heuristics, which val-



EMDDl12J DD 19J MI-NN l10J IAPR l4J mi-SVM MI-SVM 
MUSK1 84.8 88.0 88.9 92.4 87.4 77.9 
MUSK2 84.9 84.0 82.5 89.2 83.6 84.3 

Table 1: Accuracy results for various methods on the MUSK data sets. 

idate the maximum margin formulation of SVM. We will address further algorithmic 
improvements in future work. 

6 Experimental Results 

We have performed experiments on various data sets to evaluate the proposed tech­
niques and compare them to other methods for MIL. As a reference method we 
have implemented the EM Diverse Density (EM-DD) method [12], for which very 
competitive results have been reported on the MUSK benchmark!. 

6.1 MUSK Data Set 

The MUSK data sets are the benchmark data sets used in virtually all previous 
approaches and have been described in detail in the landmark paper [4]. Both 
data sets, MUSK1 and MUSK2, consist of descriptions of molecules using multiple 
low-energy conformations. Each conformation is represented by a 166-dimensional 
feature vector derived from surface properties. MUSK1 contains on average ap­
proximately 6 conformation per molecule, while MUSK2 has on average more than 
60 conformations in each bag. The averaged results of ten 10-fold cross-validation 
runs are summarized in Table 1. The SVM results are based on an RBF kernel 
K(x, y) = exp( -')'llx - Y112) with coarsely optimized ')'. For both MUSK1 and 
MUSK2 data sets, mi-SVM achieves competitive accuracy values. While MI-SVM 
outperforms mi-SVM on MUSK2, it is significantly worse on MUSK1. Although 
both methods fail to achieve the performance of the best method (iterative APR)2, 
they compare favorably with other approaches to MIL. 

6.2 Automatic Image Annotation 

We have generated new MIL data sets for an image annotation task. The original 
data are color images from the Corel data set that have been preprocessed and 
segmented with the Blobworld system [2]. In this representation, an image consists 
of a set of segments (or blobs), each characterized by color, texture and shape 
descriptors. We have utilized three different categories ("elephant", "fox", "tiger") 
in our experiments. In each case, the data sets have 100 positive and 100 negative 
example images. The latter have been randomly drawn from a pool of photos of 
other animals. Due to the limited accuracy of the image segmentation, the relative 
small number of region descriptors and the small training set size, this ends up being 
quite a hard classification problem. We are currently investigating alternative image 

1 However, the description of EM-DD in [12] seems to indicate that the authors used 
the test data to select the optimal solution obtained from multiple runs of the algorithm. 
In the pseudo-code formulation of EM-DD, Di is used to compute the error for the i-th 
data fold, where it should in fact be Dt = D - Di (using the notation of [12]). We have 
used the corrected version of the algorithm in our experiments and have obtained accuracy 
numbers using EM-DD that are more in line with previously published results. 

2Since the IAPR (iterative axis parallel rectangle) methods in [4] have been specifically 
designed and optimized for the MUSK classification task, the superiority of APR should 
not be interpreted as a failure. 






