
Improved Output Coding for Classification 
Using Continuous Relaxation 

Koby Crammer and Yoram Singer 
School of Computer Science & Engineering 

The Hebrew University, Jerusalem 91904, Israel 
{kob i cs ,sing e r }@ c s.huji.ac .il 

Abstract 

Output coding is a general method for solving multiclass problems by 
reducing them to multiple binary classification problems. Previous re­
search on output coding has employed, almost solely, predefined discrete 
codes. We describe an algorithm that improves the performance of output 
codes by relaxing them to continuous codes. The relaxation procedure 
is cast as an optimization problem and is reminiscent of the quadratic 
program for support vector machines. We describe experiments with the 
proposed algorithm, comparing it to standard discrete output codes. The 
experimental results indicate that continuous relaxations of output codes 
often improve the generalization performance, especially for short codes. 

1 Introduction 
The problem of multiclass categorization is about assigning labels to instances where the la­
bels are drawn from some finite set. Many machine learning problems include a multiclass 
categorization component in them. Examples for such applications are text classification, 
optical character recognition, medical analysis, and object recognition in machine vision. 
There are many algorithms for the binary class problem, where there are only two possible 
labels, such as SVM [17], CART [4] and C4.5 [14]. Some of them can be extended to 
handle multiclass problems. An alternative and general approach is to reduce a multiclass 
problem to a multiple binary problems. 

In [9] Dietterich and Bakiri described a method for reducing multiclass problems to multi­
ple binary problems based on error correcting output codes (ECOC). Their method consists 
of two stages. In the training stage, a set of binary classifiers is constructed, where each 
classifier is trained to distinguish between two disjoint subsets of the labels. In the classi­
fication stage, each of the trained binary classifiers is applied to test instances and a voting 
scheme is used to decide on the label. Experimental work has shown that the output coding 
approach can improve performance in a wide range of problems such as text classifica­
tion [3], text to speech synthesis [8], cloud classification [1] and others [9, 10, 15]. The 
performance of output coding was also analyzed in statistics and learning theoretic con­
texts [11, 12, 16, 2]. 

Most of previous work on output coding has concentrated on the problem of solving multi­
class problems using predefined output codes, independently of the specific application and 
the learning algorithm used to construct the binary classifiers. Furthermore, the "decoding" 



scheme assigns the same weight to each learned binary classifier, regardless of its perfor­
mance. Last, the induced binary problems are treated as separate problems and are learned 
independently. Thus, there might be strong statistical correlations between the resulting 
classifiers, especially when the induced binary problems are similar. These problems call 
for an improved output coding scheme. 

In a recent theoretical work [7] we suggested a relaxation of discrete output codes to con­
tinuous codes where each entry of the code matrix is a real number. As in discrete codes, 
each column of the code matrix defines a partition of the set of the labels into two subsets 
which are labeled positive (+) and negative (-). The sign of each entry in the code matrix 
determines the subset association (+ or -) and magnitude corresponds to the confidence 
in this association. In this paper we discuss the usage of continuous codes for multiclass 
problems using a two phase approach. First, we create a binary output code matrix that is 
used to train binary classifiers in the same way suggested by Dietterich and Bakiri. Given 
the trained classifiers and some training data we look for a more suitable continuous code 
by casting the problem as a constrained optimization problem. We then replace the original 
binary code with the improved continuous code and proceed analogously to classify new 
test instances. 

An important property of our algorithm is that the resulting continuous code can be ex­
pressed as a linear combination of a subset of the training patterns. Since classification 
of new instances is performed using scalar products between the predictions vector of the 
binary classifiers and the rows of the code matrix, we can exploit this particular form of 
the code matrix and use kernels [17] to construct high dimensional product spaces. This 
approach enables an efficient and simple way to take into account correlations between the 
different binary classifiers. 

The rest of this paper is organized as follows. In the next section we formally describe 
the framework that uses output coding for multiclass problems. In Sec. 3 we describe our 
algorithm for designing a continuous code from a set of binary classifiers. We describe and 
discuss experiments with the proposed approach in Sec. 4 and conclude in Sec. 5. 

2 Multiclass learning using output coding 

Let S = {(Xl, Yl)"'" (xm, Ym)} be a set of m training examples where each instance 
Xi belongs to a domain X. We assume without loss of generality that each label Yi is an 
integer from the set Y = {I, ... , k}. A multiclass classifier is a function H : X -+ Y that 
maps an instance X into an element Y of y. In this work we focus on a framework that uses 
output codes to build multiclass classifiers from binary classifiers. A binary output code 
M is a matrix of size k x lover { -1, + I} where each row of M correspond to a class 
Y E y. Each column of M defines a partition of Y into two disjoint sets. Binary learning 
algorithms are used to construct classifiers, one for each column t of M. That is, the set 
of examples induced by column t of M is (Xl, Mt,yJ, . .. , (Xm, Mt,y~). This set is fed as 
training data to a learning algorithm that finds a binary classifier. In this work we assume 
that each binary classifier ht is of the form ht : X -+ R This reduction yields l different 
binary classifiers hl , ... , ht. We denote the vector of predictions of these classifiers on an 
instance X by h(x) = (h l (x), ... , ht(x)). We denote the rth row of M by Mr. 
Given an example X we predict the label Y for which the row My is the "most similar" to 
h(x). We use a general notion of similarity and define it through an inner-product function 
K : JRt X JRt -+ JR. The higher the value of K(h(x), Mr) is the more confident we are 
that r is the correct label of x according to the set of classifiers h. Note that this notion 
of similarity holds for both discrete and continuous matrices. An example of a simple 



similarity function is K(u, v) = u . v. It is easy to verify that when both the output code 
and the binary classifiers are over { -1, + I} this choice of K is equivalent to picking the 
row of M which attains the minimal Hamming distance to h(x). 

To summarize, the learning algorithm receives a training set S, a discrete output code 
(matrix) of size k x l, and has access to a binary learning algorithm, denoted L. The 
learning algorithm L is called l times, once for each induced binary problem. The result 
of this process is a set of binary classifiers h(x) = (hI (x), ... , hl(x)). These classifiers 
are fed, together with the original labels YI, ... , Ym to our second stage of the learning 
algorithm which learns a continuous code. This continuous code is then used to classify 
new instances by choosing the class which correspond to a row with the largest inner­
product. The resulting classifier can be viewed as a two-layer neural network. The first 
(hidden) layer computes hI (x), ... , hi (x) and the output unit predicts the final class by 
choosing the label r which maximizes K(h(x), Mr). 

3 Finding an improved continuous code 
We now describe our method for finding a continuous code that improves on a given en­
semble of binary classifiers h. We would like to note that we do not need to know the 
original code that was originally used to train the binary classifiers. For simplicity we use 
the standard scalar-product as our similarity function. We discuss at the end of this section 
more general similarity functions based on kernels which satisfy Mercer conditions. 

The approach we take is to cast the code design problem as a constrained optimization 
problem. The multiclass empirical error is given by 

where [7f] is equal to 1 if the predicate 7f holds and 0 otherwise. Borrowing the idea 
of soft margins [6] we replace the 0-1 multiclass error with a piece wise linear bound 
maxr{h(xi) . Mr + by"r} -h(Xi) . My" where bi,j = 1 - Oi,j, i.e., it is equal 0 if i = j 
and 1 otherwise. We now get an upper bound on the empirical loss 

f.s(M, h) ~ ~ f [m:x{h(xi) . Mr + by"r} -h(Xi) . My,] 
i=1 

(1) 

Put another way, the correct label should have a confidence value that is larger by at least 
one than any of the confidences for the rest of the labels. Otherwise, we suffer loss which 
is linearly proportional to the difference between the confidence of the correct label and the 
maximum among the confidences of the other labels. 

Define the l2-norm of a code M to be the l2-norm of the vector represented by the con­
catenation of M's rows, IIMII~ = II(MI , ... , Mk)ll~ = Ei,j Mi~j , where f3 > 0 is a 
regularization constant. We now cast the problem of finding a good code which minimizes 
the bound Eq. (1) as a quadratic optimization problem with "soft" constraints, 

1 m 

2f3IIMII~ + L~i 
i=1 

Solving the above optimization problem is done using its dual problem (details are omitted 



due to lack of space). The solution of the dual problem result in the following form for M 

(3) 

where 'T/i,r are variables of the dual problem which satisfy Vi, r : 'T/i,r ~ 0 and L:r 'T/i,r = 1. 

Eq. (3) implies that when the optimum of the objective function is achieved each row of 
the matrix M is a linear combination of li(Xi). We thus say that example i is a support 
pattern for class r if the coefficient (t5yi ,r - 'T/i,r) of li(Xi) in Eq. (3) is non-zero. There 
are two cases for which example i can be a support pattern for class r: The first is when 
Yi = rand 'T/i,r < 1. The second case is when Yi i' rand 'T/i,r > O. Put another way, fixing 
i, we can view 'T/i,r as a distribution, iii, over the labels r. This distribution should give a 
high probability to the correct label Yi. Thus, an example i "participates" in the solution 
for M (Eq. (3» if and only if iii is not a point distribution concentrating on the correct label 
Yi. Since the continuous output code is constructed from the support patterns, we call our 
algorithm SPOC for Support Patterns Output Coding. 

Denote by Ti = Iy. - iii. Thus, from Eq. (3) we obtain the classifier, 

H(x) = argm:x {li(x) . Mr } = argm:x { ~ Ti,r [li(x) ·li(Xi)] } (4) 

Note that solution as defined by Eq. (4) is composed of inner-products of the prediction 
vector on a new instance with the support patterns. Therefore, we can transform each 
prediction vector to some high dimensional inner-product space Z using a transformation 
¢ : ]Rl -t Z. We thus replace the inner-product in the dual program with a general inner­
product kernel K that satisfies Mercer conditions [17]. From Eq. (4) we obtain the kernel­
based classification rule H(x), 

(5) 

The ability to use kernels as a means for calculating inner-products enables a simple and 
efficient way to take into account correlations between the binary classifiers. For instance, a 
second order polynomial of the form (1 + iiii)2 correspond to a transformation to a feature 
space that includes all the products of pairs of binary classifiers. Therefore, the relaxation 
of discrete codes to continuous codes offers a partial remedy by assigning different impor­
tance weight to each binary classifier while taking into account the statistical correlations 
between the binary classifiers. 

4 Experiments 
In this section we describe experiments we performed comparing discrete and continuous 
output codes. We selected eight multiclass datasets, seven from the VCI repository! and the 
mnist dataset available from AT&T2. When a test set was provided we used the original 
split into training and test sets, otherwise we used 5-fold cross validation for evaluating 
the test error. Since we ran multiple experiments with 3 different codes, 7 kernels, and two 
base-learners, we used a subset of the training set formnist, letter, and shut tIe. We 
are in the process of performing experiments with the complete datasets and other datasets 
using a subset of the kernels. A summary of data sets is given in Table 1. 

Ihttp://www.ics.uci.edllimlearnIMLRepository.html 
2http://www.research.att.comryann/ocr/mnist 



Name No. of No. of No. of No. of 
Training Examples Test Examples Classes Attributes 

satimage 4435 2000 6 36 
shuttle 5000 9000 7 9 
mnist 5000 10000 10 784 
isolet 6238 1559 26 6 
letter 5000 4000 26 16 
vowel 528 462 11 10 
glass 214 5-fold eval 7 10 
soybean 307 376 19 35 

Table 1: Description of the datasets used in experiments. 

We tested three different types of codes: one-against-all (denoted "id"), BCH (a linear 
error correcting code), and random codes. For a classification problem with k classes we 
set the random code to have about 10 log2 (k) columns. We then set each entry in the matrix 
defining the code to be -1 or + 1 uniformly at random. We used SVM as the base binary 
learning algorithm in two different modes: In the first mode we used the margin of the 
vector machine classifier as its real-valued prediction. That is, each binary classifier ht is 
of the fonn ht(x) = w·x+b where wand b are the parameters ofthe separating hyperplane. 
In the second mode we thresholded the prediction of the classifiers, ht(x) = sign(w ·x+b) . 
Thus, each binary classifier ht in this case is of the fonn ht : X -t {-I, +1}. For brevity, 
we refer to these classifiers as thresholded-SVMs. We would like to note in passing that 
this setting is by no means superficial as there are learning algorithms, such as RIPPER [5], 
that build classifiers of this type. We ran SPOC with 7 different kernels: homogeneous and 
non-homogeneous polynomials of degree 1,2, and 3, and radial-basis-functions (RBF). 

A summary of the results is depicted in Figure 1. The figure contains four plots. Each plot 
show the relative test error difference between discrete and continuous codes. Formally, 
the height of each bar is proportional to (Ed - Ec) / Ed where Ed (Ec) is the test error when 
using a discrete (continuous) code. For each problem there are three bars, one for each 
type of code (one-against-all, BCH, and random). The datasets are plotted left to right in 
decreasing order with respect to the number of training examples per class. The left plots 
correspond to the results obtained using thresholded-SVM as the base binary classifier and 
right plots show the results using the real-valued predictions. For each mode we show the 
results of best performing kernel on each dataset (top plots) and the average (over the 7 
different kernels) performance (bottom plots). 

In general, the continuous output code relaxation indeed results in an improved perfor­
mance over the original discrete output codes. The most significant improvements are 
achieved with thresholded-SVM as the base binary classifiers. On most problems all the 
kernels achieve some improvement. However, the best performing kernel seems to be prob­
lem dependent. Impressive improvements are achieved for data sets with a large number of 
training examples per class, shuttle being a notable example. For this dataset the test 
error is reduced from an average of over 3% when using discrete code to an average test 
error which is significantly lower than 1% for continuous codes. Furthennore, using a 
non-homogeneous polynomial of degree 3 reduces the test error rate down to 0.48%. In 
contrast, for the so yb e a n dataset, which contains 307 training examples, and 19 classes, 
none of the kernels achieved any improvement, and often resulted in an increase in the test 
error. Examining the training error reveals that the greater the decrease in the training error 
due to the continuous code relaxation the worse the increase in the corresponding test error. 
This behavior indicates that SPOC overfitted the relatively small training set. 



0 _ 
_ BeH 

80 . ,.;n;!om 

• , SO 

! 

t" 
L. 

�~�I�I� 
�~� 

_.1 _II �~�.�I� 0.. 011 °1-
satmage stulle Isolel lell er glass soybean 

�~ �_� __I _._ 0._ oil �~�I�I� 

sallmage shlAl le �m�~ �s�t� Isolel leller vowel glass soybean 

Figure 1: Comparison of the performance of discrete and continuous output codes using 
SVM (right figures) and thresholded-SVM (left figures) as the base learner for three dif­
ferent families of codes. The top figures show the relative change in test error for the best 
performing kernel and the bottom figures show the relative change in test error averaged 
across seven different kernels. 

To conclude this section we describe an experiment that evaluated the performance of the 
SPOC algorithm as a function of the length of random codes. Using the same setting de­
scribed above we ran SPOC with random codes of lengths 5 through 35 for the vowel 
dataset and lengths 15 through 50 for the let ter dataset. In Figure 2 we show the test 
error rate as a function of the the code length with SVM as the base binary learner. (Sim­
ilar results were obtained using thresholded-SVM as the base binary classifiers.) For the 
letter dataset we see consistent and significant improvements of the continuous codes 
over the discrete ones whereas for vowel dataset there is a major improvement for short 
codes that decays with the code's length. Therefore, since continuous codes can achieve 
performance comparable to much longer discrete codes they may serve as a viable alter­
native for discrete codes when computational power is limited or for classification tasks of 
large datasets. 

5 Discussion 
In this paper we described and experimented with an algorithm for continuous relaxation of 
output codes for multiclass categorization problems. The algorithm appears to be especially 
useful when the codes are short. An interesting question is whether the proposed approach 
can be generalized by calling the algorithm successively on the previous code it improved. 
Another viable direction is to try to combine the algorithm with other scheme for reducing 




