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Abstract 

In this paper, we discuss some new research directions in automatic 
speech recognition (ASR), and which somewhat deviate from the 
usual approaches. More specifically, we will motivate and briefly 
describe new approaches based on multi-stream and multi/band 
ASR. These approaches extend the standard hidden Markov model 
(HMM) based approach by assuming that the different (frequency) 
channels representing the speech signal are processed by different 
(independent) "experts", each expert focusing on a different char­
acteristic of the signal, and that the different stream likelihoods (or 
posteriors) are combined at some (temporal) stage to yield a global 
recognition output. As a further extension to multi-stream ASR, 
we will finally introduce a new approach, referred to as HMM2, 
where the HMM emission probabilities are estimated via state spe­
cific feature based HMMs responsible for merging the stream infor­
mation and modeling their possible correlation. 

1 Multi-Channel Processing in ASR 

Current automatic speech recognition systems are based on (context-dependent or 
context-independent) phone models described in terms of a sequence of hidden 
Markov model (HMM) states, where each HMM state is assumed to be character­
ized by a stationary probability density function. Furthermore, time correlation, 
and consequently the dynamic of the signal, inside each HMM state is also usu­
ally disregarded (although the use of temporal delta and delta-delta features can 
capture some of this correlation). Consequently, only medium-term dependencies 
are captured via the topology of the HMM model, while short-term and long-term 
dependencies are usually very poorly modeled. Ideally, we want to design a partic­
ular HMM able to accommodate multiple time-scale characteristics so that we can 
capture phonetic properties, as well as syllable structures and {long term) invariants 
that are more robust to noise. It is, however, clear that those different time-scale 
features will also exhibit different levels of stationarity and will require different 
HMM topologies to capture their dynamics. 

There are many potential advantages to such a multi-stream approach, including: 



1. The definition of a principled way to merge different temporal knowledge 
sources such as acoustic and visual inputs, even if the temporal sequences 
are not synchronous and do not have the same data rate - see [13] for 
further discussion about this. 

2. Possibility to incorporate multiple time resolutions (as part of a structure 
with multiple unit lengths, such as phon(l and syllable). 

3. As a particular case of multi-stream processing, mufti-band ASR [2, 5], 
involving the independent processing and combination of partial frequency 
bands, have many potential advantages briefly discussed below. 

In the following, we will not discuss the underlying algorithms (more or less "com­
plex" variants of Viterbi decoding), nor detailed experimental results (see, e.g., [4] 
for recent results). Instead, we will mainly focus on the combination strategy and 
discuss different variants arounds the same formalism. 

2 Multiband-based ASR 

2.1 General Formalism 

As a particular case of the multi-stream paradigm, we have been investigating an 
ASR approach based on independent processing and combination of frequency sub­
bands. The general idea, as illustrated in Fig. 1, is to split the whole frequency band 
(represented in terms of critical bands) into a few subbands on which different rec­
ognizers are independently applied. The resulting probabilities are then combined 
for recognition later in the process at some segmental level. Starting from critical 
bands, acoustic processing is now performed independently for each frequency band, 
yielding K input streams, each being associated with a particular frequency band. 
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Figure 1: Typical multiband-based ASR architecture. In multi-band speech recogni­
tion, the frequency range is split into several bands, and information in the bands is 
used for phonetic probability estimation by independent modules. These probabilities 
are then combined for recognition later in the process at some segmental level. 

In this case, each of the K sub-recognizer (channel) is now using the information 
contained in a specific frequency band Xk = { xt, x~, ... , x~, ... , x~}, where each 
x~ represents the acoustic (spectral) vector at time n in the k-th stream. 

In the case of hybrid HMM/ ANN systems, HMM local emission (posterior) proba­
bilities are estimated by an artificial neural network (ANN), estimating P(qjlxn), 
where q3 is an HMM state and Xn = (x~, ... ,x~, ... ,x:f)t the feature vector at 
time n. 



In the case of multi-stream (or subband-based) HMM£ ANN systems, different ANNs 
will compute state specific stream posteriors P(qjJxn)· Combination ofthese local 
posteriors can then be performed at different temporal levels, and in many ways, 
including [2]: untrained linear or trained linear (e.g., as a function of automatically 
estimated local SNR) functions, as well as trained nonlinear functions (e.g., by using 
a neural network). In the simplest case, this subband posterior recombination is 
performed at the HMM state level, which then amounts to performing a standard 
Viterbi decoding in which local {log) probabilities are obtained from a linear or 
nonlinear combination of the local subband probabilities. For example, in the initial 
subband-based ASR, local posteriors P(qjJxn) were estimated according to: 

K 

P(qjJxn) = I:wkP(qjJx!,E>k) (1) 
k=l 

where, in our case, each P(qjJx!, E>k) is computed with a band-specific ANN of 
parameters E>k and with x~ (possibly with temporal context) at its input. The 
weighting factors can be assigned a uniform distribution (already performing very 
well [2]) or be proportional to the estimated SNR. Over the last few years, several 
results were reported showing that such a simple approach was usually more robust 
to band limited noise. 

2.2 Motivations and Drawbacks 

The multi-band briefly discussed above has several potential advantages summarized 
here. 

Better robustness to band-limited noise- The signal may be impaired (e.g., 
by noise, channel characteristics, reverberation, ... ) only in some specific frequency 
bands. When recognition is based on several independent decisions from different 
frequency subbands, the decoding of a linguistic message need not be severely im­
paired, as long as the remaining clean sub bands supply sufficiently reliable informa­
tion. This was confirmed by several experiments (see, e.g., [2]). Surprisingly, even 
when the combination is simply performed at the HMM state level, it is observed 
that the multi-band approach is yielding better performance and noise robustness 
than a regular full-band system. 

Similar conclusions were also observed in the framework of the missing feature 
theory [7, 9]. In this case, it was shown that, if one knows the position of the 
noisy features, significantly better classification performance could be achieved by 
disregarding the noisy data (using marginal distributions) or by integrating over 
all possible values of the missing data conditionally on the clean features - See 
Section 3 for further discussion about this. 

Better modeling- Sub band modeling will usually be more robust. Indeed, since 
the dimension of each (subband) feature space is smaller, it is easier to estimate 
reliable statistics (resulting in a more robust parametrization). Moreover, the all­
pole modeling usually used in ASR will be more robust if performed on sub bands, 
i.e., in lower dimensional spaces, than on the full-band signal [12]. 

Channel asynchrony - Transitions between more stationary segments of speech 
do not necessarily occur at the same time across the different frequency bands [8], 
which makes the piecewise stationary assumption more fragile. The subband ap­
proach may have the potential of relaxing the synchrony constraint inherent in 
current HMM systems. 

Channel specific processing and modeling - Different recognition strate-



gies might ultimately be applied in different subbands. For example, different 
time/frequency resolution tradeoff's could be chosen (e.g., time resolution and width 
of analysis window depending on the frequency subband). Finally, some subbands 
may be inherently better for certain classes of speech sounds than others. 

Major objections ~nd drawbacks - One of the common objections [8] to this 
separate modeling of each frequency band has been that important information in 
the form of correlation between bands may be lost. Although this may be true, 
several studies [8], as well as the good recognition rates achieved on small frequency 
bands [3, 6], tend to show that most of the phonetic information is preserved in each 
frequency band (possibly provided that we have enough temporal information). This 
drawback will be fixed by the method presented next. 

3 Full Combination Subband ASR 

If we know where the noise is, and based on the results obtained with missing 
data [7, 9], impressive noise robustness can be achieved by using the marginal 
distribution, estimating the HMM emission probability based on the clean frequency 
bands only. In our subband approach, we do not assume that we know, or detect 
explicitly, where the noise is. Following the above developments and discussions, 
it thus seems reasonable to integrate over all possible positions of the noisy bands, 
and thus to simultaneously deal with all the L = 2K possible subband combinations 
S~ (with i = 1, ... , L, and also including the empty set) extracted from the feature 
vector Xn- Introducing the hidden variable E~, representing the statistical (exclusive 
and mutually exhaustive) event that the feature subset S~ is "clean" (reliable), 
and integrating over all its possible values, we can then rewrite the local posterior 
probability as: 

L 

P(qilxn,E>) = :EP(qj,E~Ixn,E>) 
£=1 

L 

= I: P(qj IE~, Xn, E>.e)P(E~Ixn) 
£=1 

L 

I: P(qj IS~, E>.e)P(E~Ixn) (2) 
£=1 

where P(E~Ixn) represents the relative reliability of a specific feature set. E> rep­
resents the whole parameter space, while E>.e denotes the set of (ANN) parameters 
used to compute the subband posteriors. 

Typically, training of the L neural nets would be done once and for all on clean 
data, and the recognizer would then be adapted on line simply by adjusting the 
weights P(E~Ixn) (still representing a limited set of L parameters) to increase the 
global posteriors. This adaptation can be performed by online estimation of the 
signal-to-noise ratio or by online, unsupervised, EM adaptation. 

While it is pretty easy to quickly estimate any subband likelihood or marginal 
distribution when working with Gaussian or multi-Gaussian densities [7], straigh 
implementation of (2) is not always tractable since it requires the use (and training) 
of L neural networks to estimate all the posteriors P(q3IS~,E>.e). However, it has 
the advantage of not requiring the subband independence assumption [3]. 

An interesting approximation to this "optimal" solution though consists in simply 
using the neural nets that are available (K of them in the case of baseline sub band 
ASR) and, re-introducing the independence assumption, to approximate all the 



other subband combination probabilities in (2), as follows [3, 4): 

P( ·IS£ e) =P( ·)II P(qilx~,ek) 
q3 n• I. q3 P( ·) 

kESL qJ 
(3) 

Experimental results obtained from this Full. Combination approach in different 
noisy conditions are reported in [3, 4), where the performance of this above approx­
imation was also compared to the "optimal" estimators (2). Interestingly, it was 
shown that this independence assumption did not hurt much and that the resulting 
recognition performance was similar to the performance obtained by training and 
recombining all possible L nets (and significantly better than the original subband 
approach). In both cases, the recognition rate and the robustness to noise were 
greatly improved compared to the initial subband approach. This further confirms 
that we do not seem to lose "critically" important information when neglecting the 
correlation between bands. 

In the next section, we biefly introduced a further extension of this approach where 
the segmentation into subbands is no longer done explicitly, but is achieved dynam­
ically over time, and where the integration over all possible frequency segmentation 
is part of the same formalism. 

4 HMM2: Mixture of HMMs 

HMM emission probabilities are typically modeled through Gaussian mixtures or 
neural networks. We propose here an alternative approach, referred to as HMM2, in­
tegrating standard HMMs (referred to as ''temporal HMMs") with state-dependent 
feature-based HMMs (referred to as ''feature HMMs") responsible for the estima­
tion of the emission probabilities. In this case, each feature vector Xn at time n is 
considered as a fixed length sequence, which has supposedly been generated by a 
temporal HMM state specific HMM for which each state is emitting individual fea­
ture components that are modeled by, e.g., one dimensional Gaussian mixtures. The 
feature HMM thus looks at all possible subband segmentations and automatically 
performs the combination of the likelihoods to yield a single emission probability. 

The resulting architecture is illustrated in Figure 2. In this example, the HMM2 is 
composed of an HMM that handle sequences of features through time. This HMM 
is composed of 3 left-to-right connected states (q1, q2 and q3) and each state emits 
a vector of features at each time step. The particularity of an HMM2 is that each 
state uses an HMM to emit the feature vector, as if it was an ordered sequence 
(instead of a vector). In Figure 2, state q2 contains a feature HMM with 4 states 
connected top-down. Of course, while the temporal HMM usually has a left-to-right 
structure, the topology of the feature HMM can take many forms, which will then 
reflect the correlation being captured by the model. The feature HMM could even 
have more states than feature components, in which case "high-order" correlation 
information could be extracted. 

In [1), an EM algorithm to jointly train all the parameters of such HMM2 in order 
to maximize the data likelihood has been derived. This derivation was based on the 
fact that an HMM2 can be considered as a mixture of mixtures of distributions. 

We believe that HMM2 (which includes the classical mixture of Gaussian HMMs as 
a particular case) has several potential advantages, including: 

1. Better feature correlation modeling through the feature-based (frequency) 
HMM topology. Also, the complexity of this topology and the probability 



density function associated with each state easily control the number of 
parameters. 

2. Automatic non-linear spectral warping. In the same way the conventional 
HMM does time warping and time integration, the feature-based HMM 
performs frequency warping and frequency integration. 

3. Dynamic formant trajectory modelling. As further discussed below, the 
HMM2 structure has the potential to extract some relevant formant struc­
ture information, which is often considered as important to robust speech 
recognition. 

To illustrate the last point and its relationship with dynamic multi-band ASR, 
the HMM2 models was used in [14] to extract formant-like information. All the 
parameters of HMM2 models were trained according to the above EM algorithm on 
delta-frequency features (differences of two consecutive log Rasta PLP coefficients). 
The feature HMM had a simple top-down topology with 4 states. After training, 
Figure 3 shows (on unseen test data) the value of the features for the phoneme iy as 
well as the segmentation found by a Viterbi decoding along the delta-frequency axis 
(the thick black lines). At each time step, we kept the 3 positions where the delta­
frequency HMM changed its state during decoding (for instance, at the first time 
frame, the HMM goes from state 1 to state 2 after the third feature). We believe 
they contain formant-like information. In [14], it has been shown that the use of 
that information could significantly enhance standard speech recognition systems. 

Time 

Figure 2: An HMM2: the emis­
sion distributions of the HMM 
are estimated by another HMM. 
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