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Abstract 

Substantial data support a temporal difference (TO) model of 
dopamine (OA) neuron activity in which the cells provide a global 
error signal for reinforcement learning. However, in certain cir­
cumstances, OA activity seems anomalous under the TO model, 
responding to non-rewarding stimuli. We address these anoma­
lies by suggesting that OA cells multiplex information about re­
ward bonuses, including Sutton's exploration bonuses and Ng et 
al's non-distorting shaping bonuses. We interpret this additional 
role for OA in terms of the unconditional attentional and psy­
chomotor effects of dopamine, having the computational role of 
guiding exploration. 

1 Introduction 

Much evidence suggests that dopamine cells in the primate midbrain play an im­
portant role in reward and action learning. Electrophysiological studies support 
a theory that OA cells signal a global prediction error for summed future reward 
in appetitive conditioning tasks (Montague et al, 1996; Schultz et al, 1997), in the 
form of a temporal difference prediction error term. This term can simultaneously 
be used to train predictions (in the model, the projections of the OA cells in the 
ventral tegmental area to the limbic system and the ventral striatum) and to train 
actions (the projections of OA cells in the substantia nigra to the dorsal striatum 
and motor and premotor cortex). Appetitive prediction learning is associated with 
classical conditioning, the task of learning which stimuli are associated with re­
ward; appetitive action learning is associated with instrumental conditioning, the 
task of learning actions that result in reward delivery. 

The computational role of dopamine in reward learning is controversial for two 
main reasons (Ikemoto & Panksepp, 1999; Redgrave et al, 1999). First, stimuli that 
are not associated with reward prediction are known to activate the dopamine sys­
tem persistently, including in particular stimuli that are novel and salient, or that 
physically resemble other stimuli that do predict reward (Schultz, 1998). Second, 
dopamine release is associated with a set of motor effects, such as species- and 
stimulus-specific approach behaviors, that seem either irrelevant or detrimental to 
the delivery of reward. We call these unconditional effects. 

In this paper, we study this apparently anomalous activation of the OA system, 
suggesting that it multiplexes information about bonuses, potentially including ex­
ploration bonuses (Sutton, 1990; Dayan & Sejnowski, 1996) and shaping bonuses 
(Ng et al, 1999), on top of reward prediction errors. These responses are associated 
with the unconditional effects of OA, and are part of an attentional system. 
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Figure 1: Activity of individual DA neurons - though substantial data suggest the homogeneous 
character of these responses (Schultz, 1998). See text for description. The latency and duration of the 
DA activation is about lOOms. The depression has duration of about 200 ms. The baseline spike rate is 
about 2-4 Hz. Adapted from Schultz et al (1990, 1992, & 1993) and Jacobs et al (1997). 

2 DA Activity 

Figure 1 shows three different types of dopamine responses that have been ob­
served by Schultz et al and Jacobs et al. Figures 1A;B show the response to a con­
ditioned stimulus that becomes predictive of reward (CS+). For this, in early trials 
(figure 1A), there is no, or only a weak response to the CS+, but a strong response 
just after the time of delivery of the reward. In later trials (figure 18), after learn­
ing is complete (but before overtraining), the DA cells are activated in response to 
the stimulus, and fire at background rates to the reward. Indeed, if the reward is 
omitted, there is depression of DA activity at just the time during early trials that 
it used to excite the cells. These are the key data for which the temporal difference 
model accounts. Under the model, the cells report the temporal difference (TD) 
error for reward, ie the difference in amount of reward that is delivered and the 
amount that is expected. Let r(t) be the amount of reward received at time t and 
v(t) be the prediction of the sum total (undiscounted) reward to be delivered in a 
trial after time t, or: 

v(t) '" L r(T + t) . 
r~O 

The TD component to the dopamine activity is the prediction error: 

c5(t) = r(t) + v(t + 1) - v(t) 

(1) 

(2) 

which uses r(t) + v(t + 1) as an estimate of :Er>or(T + t), so that the TD error is an 
estimate of :Er>or(T + t) - v(t). Provided that the information about state includes 
information ab-out how much time has elapsed since the CS+ was presented (which 
must be available because of the precisely timed nature of the inhibition at the time 
of reward, if the expected reward is not presented), this model accounts well for 
the results in figure 1A. 

The general framework of reinforcement learning methods for Markov decision 
problems (MDPs) extends these results to the case of control. An MDP consists 
of states, actions, transition probabilities between states under the chosen action, 



and the associated rewards with these transitions. The goal of the subject solving a 
MOP is to find a policy (a choice of actions in each state) so as to optimize the sum 
total reward it receives. The TO error 8(t) can be used to learn optimal policies 
by implementing a form of policy iteration, which is an optimal control teclmique 
that is standard in engineering (Sutton & Barto, 1998; Bertsekas & Tsitsiklis, 1996). 

Figures lC;O show that reporting a prediction error for reward does not exhaust 
the behavioral repertoire of the OA cells. Figure lC shows responses to salient, 
novel, stimuli. The dominant effect is that there is a phasic activation of dopamine 
cells followed by a phasic inhibition, both locked to the stimulus. These novelty 
responses decrease over trials, but quite slowly for very salient stimuli (Schultz, 
1998). In some cases, particularly in early trials of appetitive learning (figure lA 
top), there seems to be little or no phasic inhibition of the cells following the acti­
vation. Figure 10 shows what happens when a stimulus (door -) that resembles 
a reward-predicting stimulus (door +) is presented without reinforcement. Again 
a phasic increase over baseline followed by a depression is seen (lower 10). How­
ever, unlike the case in figure 1 B, there is no persistent reward prediction, since 
if a reward is subsequently delivered (unexpectedly), the cells become active (not 
shown) (Schultz, 1998). 

3 Multiplexing and reward distortion 

The most critical issue is whether it is possible to reconcile the behavior of the 
OA cells seen in figures lC;O with the putative computational role of OA in terms 
of reporting prediction error for reward. Intuitively, these apparently anomalous 
responses are benign, that is they do not interfere with the end point of normal 
reward learning, provided that they sum to zero over a trial. 

To see this, consider what happens once learning is complete. If we sum the 
prediction error terms from equation 2, starting from the time of the stimulus 
onset at t = I, we get 

L:t~l 8(t) = v(tend) - v(l) + L:t~l r(t) 

where tend is the time at the end of the trial. Assuming that v(tend)=O and v(l) =0, 
ie that the monkey confines its reward predictions to within a trial, we can see 
that any additional influences on 8(t) that sum to 0 preserve predicted sum future 
rewards. From figure I, this seems true of the majority of the extra responses, ie 
anomalous activation is canceled by anomalous inhibition, though it is not true of 
the uncancelled OA responses shown in figure lA (upper). Altogether, OA activity 
can still be used to learn predictions and choose actions - although it should not 
strictly be referred to solely in terms of prediction error for reward. 

Apart from the issue of anomalous activation that is not canceled (upper figure lA), 
this leaves open two key questions: what drives the extra OA responses; and what 
effects do they have. We offer a set of possible interpretations (mostly associated 
with bonuses) that it is hard to decide between on the basis of current data. 

4 Novelty and Bonuses 

Three very different sorts of bonuses have been considered in reinforcement learn­
ing, novelty, shaping and exploration bonuses. The presence of the first two of 
these is suggested by the responses in figure 1. Bonuses modify the reward signals 
and so change the course of learning. They are mostly used to guide exploration 
of the world, and are typically heuristic ways of addressing the computationally 
intractable exploration-exploitation dilemma. 
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Figure 2: Activity of the DA system given novelty bonuses. The plots show different as­
pects of the TD error 8 as a function of time t within a trial (first three plots in each row) or 
as a function of number T of trials (last two). Upper) A novelty signal was applied for just 
the first timesteps of the stimulus and decayed hyperbolically with trial number as liT. 
Lower) A novelty signal was applied for the first two timesteps of the stimulus and now 
decayed exponentially as e-· 3T to demonstrate that the precise form of decay is irrelevant. 
Trial numbers and times are shown in the plots. The learning rate was E = 0.3. 

We first consider a novelty bonus, which we take as a model for uncancelled anoma­
lous activity. A novelty bonus is a value that is added to states or state-action 
pairs associated with their unfamiliarity - novelty is made intrinsically reward­
ing. This is computationally reasonable, at least in moderation, and indeed it has 
become standard practice in reinforcement learning to use optimistic initial values 
for states to encourage systems to plan to get to novel or unfamiliar states. In TD 
terms, this is like replacing the true environmental reward r(t) at time t with 

r(t) --t r(t) + n(x(t), T) 

where x(t) is the state at time t and n(x(t), T) is the novelty of this state in trial T 
(an index we generally suppress). The effect on the TD error is then 

c5(t) = r(t) + n(x(t), T) + v(t + 1) - v(t) (3) 

The upper plots in figure 2 show the effect of including such an exploration bonus, 
in a case in which just the first timestep of a new stimulus in any given trial are 
awarded a novelty signal which decays hyperbolically to 0 as the stimulus be­
comes more familiar. Here, a novel stimulus is presented for a 25 trials without 
there being any reward consequences. The effect is just a positive signal which de­
creases over time. Learning has no effect on this, since the stimulus cannot predict 
away a novelty signal that lasts only a single timestep. The lower plots in figure 2 
show that it is possible to get partial apparent cancellation through learning, if the 
novelty signal is applied for the first two timesteps of a stimulus (for instance if 
the novelty signal is calculated relatively slowly). In this case, the initial effect is 
just a positive signal (leftmost graph), the effect of TD learning gives it a negative 
transient after a few trials (second plot), and then, as the novelty signal decays to 
0, the effect goes away (third plot). The righthand plots show how c5(t) behaves 
across trials. If there was no learning, then there would be no negative transient. 
The depression of the DA signal comes from the decay of the novelty bonuses. 

Novelty bonuses are true bonuses in the sense that they actually distort the re­
ward function. In particular, this means that we would not expect the sum of the 
extra TD error terms to be 0 across a trial. This property makes them useful, for 
instance, in actually distorting the optimal policy in Markov decision problems to 
ensure that exploration is plmmed and executed in favor of exploitation. However, 
they can be dangerous for exactly the same reason - and there are reports of them 
leading to incorrect behavior, making agents search too much. 
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Figure 3: Activity of the DA system given shaping bonuses (in the same format as figure 2). 
Upper) The plots show different aspects of the TD error 8 as a function of time t within a 
trial (first three plots) or as a function of number T of trials (last two). Here, the shaping 
bonus comes from a if>(t) = 0 for the first two timesteps a stimulus is presented within a 
trial (t=1;2), and 0 thereafter, irrespective of trial number. The learning rate was to = 0.3. 
Lower) The same plots for to = 0 

In answer to this concern, Ng et al (1999) invented the idea of non-distorting shap­
ing bonuses. Ng et aI's shaping bonuses are guaranteed not to distort optimal poli­
cies, although they can still change the exploratory behavior of agents. This guar­
antee comes because a shaping bonus is derived from a potential function ¢(x) of 
a state, distorting the TD error to 

c5(t) = r(t) + ¢(x(t + 1)) - ¢(x(t)) + v(t + 1) - v(t) (4) 

The difference from the novelty bonus of equation 3 is that the bonus comes from 
the difference between the potential functions for one state and the previous state, 
and they thus cancel themselves out when summed over a trial. Shaping bonuses 
must remain constant for the guarantee about the policies to hold. 

The upper plots in figure 3 show the effect of shaping bonuses on the TD error. 
Here, the potential function is set to the value 1 for the first two time steps of a 
stimulus in a trial, and 0 otherwise. The most significant difference between shap­
ing and novelty bonuses is that the former exhibits a negative transient even in the 
very first trial, whereas, for the latter, it is a learned effect. If the learning rate is 
non-zero, then shaping bonuses are exactly predicted away over the course of nor­
mal learning. Thus, even though the same bonus is provided on trial 25 as trial 1, 
the TD error becomes 0 since the shaping bonus is predicted away. The dynam­
ics of the decay shown in the last two plots is controlled by the learning rate for 
TD. The lower plots show what happens if learning is switched off at the time the 
shaping bonus is provided - this would be the case if the system responsible for 
computing the bonus takes its effect before the inputs associated with the stimulus 
are plastic. In this case, the shaping bonus is preserved. 

The final category of bonus is an ongoing exploration bonus (Sutton, 1990; Dayan 
& Sejnowski, 1996) which is used to ensure continued exploration. Sutton (1990) 
suggested adding to the estimated value of each state (or each state-action pair), a 
number proportional to the length of time since it was last visited. This ultimately 
makes it irresistible to go and visit states that have not been visited for a long 
time. Dayan & Sejnowski (1996) derived a bonus of this form from a model of 
environmental change that justifies the bonus. There is no evidence for this sort 
of continuing exploration bonus in the dopamine data, perhaps not surprisingly, 
since the tasks undertaken by the monkey offer little possibility for any trade-off 
between exploration and exploitation. 






