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Abstract 

The project pursued in this paper is to develop from first 
information-geometric principles a general method for learning 
the similarity between text documents. Each individual docu­
ment is modeled as a memoryless information source. Based on 
a latent class decomposition of the term-document matrix, a low­
dimensional (curved) multinomial subfamily is learned. From this 
model a canonical similarity function - known as the Fisher kernel 
- is derived. Our approach can be applied for unsupervised and 
supervised learning problems alike. This in particular covers inter­
esting cases where both, labeled and unlabeled data are available. 
Experiments in automated indexing and text categorization verify 
the advantages of the proposed method. 

1 Introduction 

The computer-based analysis and organization of large document repositories is one 
oftoday's great challenges in machine learning, a key problem being the quantitative 
assessment of document similarities. A reliable similarity measure would provide 
answers to questions like: How similar are two text documents and which documents 
match a given query best? In a time, where searching in huge on-line (hyper-)text 
collections like the World Wide Web becomes more and more popular, the relevance 
of these and related questions needs not to be further emphasized. 

The focus of this work is on data-driven methods that learn a similarity function 
based on a training corpus of text documents without requiring domain-specific 
knowledge. Since we do not assume that labels for text categories, document classes, 
or topics, etc. are given at this stage, the former is by definition an unsupervised 
learning problem. In fact, the general problem of learning object similarities pre­
cedes many "classical" unsupervised learning methods like data clustering that al­
ready presuppose the availability of a metric or similarity function. In this paper, 
we develop a framework for learning similarities between text documents from first 
principles. In doing so, we try to span a bridge from the foundations of statistics 
in information geometry [13, 1] to real-world applications in information retrieval 
and text learning, namely ad hoc retrieval and text categorization. Although the 
developed general methodology is not limited to text documents, we will for sake 
of concreteness restrict our attention exclusively to this domain. 
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2 Latent Class Decomposition 

Memoryless Information Sources Assume we have available a set of docu­
ments V = {d l , ..• , dN} over some fixed vocabulary of words (or terms) W = 
{WI, ... , WM}. In an information-theoretic perspective, each document di can be 
viewed as an information source, i.e. a probability distribution over word sequences. 
Following common practice in information retrieval, we will focus on the more re­
stricted case where text documents are modeled on the level of single word occur­
rences. This means that we we adopt the bag-of- words view and treat documents 
as memoryless information sources. I 

A. Modeling assumption: Each document is a memoryless information source. 

This assumption implies that each document can be represented by a multinomial 
probability distribution P(wjldi), which denotes the (unigram) probability that a 
generic word occurrence in document di will be Wj. Correspondingly, the data can 
be reduced to some simple sufficient statistics which are counts n(di , Wj) of how 
often a word Wj occurred in a document d j • The rectangular N x M matrix with 
coefficients n(di , Wj) is also called the term-document matrix. 

Latent Class Analysis Latent class analysis is a decomposition technique for 
contingency tables (cf. [5, 3] and the references therein) that has been applied to 
language modeling [15] ("aggregate Markov model") and in information retrieval [7] 
("probabilistic latent semantic analysis"). In latent class analysis, an unobserved 
class variable Zk E Z = {zt, ... , ZK} is associated with each observation, i.e. with 
each word occurrence (di , Wj). The joint probability distribution over V x W is a 
mixture model that can be parameterized in two equivalent ways 

K K 

P(di , Wj) = 2: P(zk)P(dilzk)P(wjlzk) = P(di) 2: P( WjIZk)P(Zk Idd . (1) 
k=l k=l 

The latent class model (1) introduces a conditional independence assumption, 
namely that di and Wj are independent conditioned on the state of the associated 
latent variable. Since the cardinality of Zk is typically smaller than the number of 
documents/words in the collection, Zk acts as a bottleneck variable in predicting 
words conditioned on the context of a particular document. 

To give the reader a more intuitive understanding of the latent class decomposition, 
we have visualized a representative subset of 16 "factors" from a K = 64 latent 
class model fitted from the Reuters2I578 collection (cf. Section 4) in Figure 1. 
Intuitively, the learned parameters seem to be very meaningful in that they represent 
identifiable topics and capture the corresponding vocabulary quite well. 

By using the latent class decomposition to model a collection of memory less sources, 
we implicitly assume that the overall collection will help in estimating parameters 
for individual sources, an assumption which has been validated in our experiments. 

B. Modeling assumption: Parameters for a collection of memoryless informa­
tion sources are estimated by latent class decomposition. 

Parameter Estimation The latent class model has an important geometrical 
interpretation: the parameters ¢1 == P( Wj IZk) define a low-dimensional subfamily 
of the multinomial family, S(¢) == {11" E [0; I]M : 1I"j = :Ek 1/;k¢1 for some1/; E 
[0; I]K, :Ek 1/;k = I}, i.e. all multinomials 11" that can be obtained by convex combi­
nations from the set of "basis" vectors {¢k : 1 :::; k :::; K}. For given ¢-parameters, 

1 Extensions to the more general case are possible, but beyond the scope of this paper. 
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Figure 1: 16 selected factors from a 64 factor decomposition ofthe Reuters21578 col­
lection. The displayed terms are the 10 most probable words in the class-conditional 
distribution P (Wj IZk) for 16 selected states Zk after the exclusion of stop words. 

each 1/;i , 1/;i == P(zkldi), will define a unique multinomial distribution rri E S(¢). 
Since S( ¢) defines a submanifold on the multinomial simplex, it corresponds to a 
curved exponential subfamily. 2 We would like to emphasis that we propose to learn 
both, the parameters within the family (the 1/;'s or mixing proportions P(Zk Idi )) and 
the parameters that define the subfamily (the ¢'s or class-conditionals P(WjIZk)). 

The standard procedure for maximum likelihood estimation in latent variable mod­
els is the Expectation Maximization (EM) algorithm. In the E-step one computes 
posterior probabilities for the latent class variables, 

P(Zk )P( di IZk )P( Wj IZk) 
2:1 P(zI)P(dilzt)P(wjlz/) 

The M-step formulae can be written compactly as 

P(Zk) P( di IZk )P( Wj IZk) 
P(di' Wj) 

P(diIZk)} N M { din 
P(WjIZk) ex 2: 2: n(dn, wm)P(zkldn, wm) X djm 

P(Zk) n=l m=l 1 

where 6 denotes the Kronecker delta. 

(2) 

(3) 

Related Models As demonstrated in [7], the latent class model can be viewed 
as a probabilistic variant of Latent Semantic Analysis [2], a dimension reduction 
technique based on Singular Value Decomposition. It is also closely related to the 
non-negative matrix decomposition discussed in [12] which uses a Poisson sampling 
model and has been motivated by imposing non-negativity constraints on a decom­
position by PCA. The relationship of the latent class model to clustering models 
like distributional clustering [14] has been investigated in [8]. [6] presents yet an­
other approach to dimension reduction for multinomials which is based on spherical 
models, a different type of curved exponential subfamilies than the one presented 
here which is affine in the mean-value parameterization. 

2Notice that graphical models with latent variable are in general stratified exponential 
families [4], yet in our case the geometry is simpler. The geometrical view also illustrates 
the well-known identifiability problem in latent class analysis. The interested reader is 
referred to [3]. As a practical remedy, we have used a Bayesian approach with conjugate 
(Dirichlet) prior distributions over all multinomials which for the sake of clarity is not 
described in this paper since it is very technical but nevertheless rather straightforward. 
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3 Fisher Kernel and Information Geometry 

The Fisher Kernel We follow the work of [9] to derive kernel functions (and 
hence similarity functions) from generative data models. This approach yields a 
uniquely defined and intrinsic (i. e. coordinate invariant) kernel, called the Fisher 
kernel. One important implication is that yardsticks used for statistical models 
carryover to the selection of appropriate similarity functions. In spite of the purely 
unsupervised manner in which a Fisher kernel can be learned, the latter is also very 
useful in supervised learning, where it provides a way to take advantage of addi­
tional unlabeled data. This is important in text learning, where digital document 
databases and the World Wide Web offer a huge background text repository. 

As a starting point, we partition the data log-likelihood into contributions from 
the various documents. The average log-probability of a document di , i.e. the 
probability of all the word occurrences in d i normalized by document length is 
given by, 

M K 

l(dd = L F(wjld i ) log L P(WjIZk)P(Zkldi), F(wj Idi ) == 2: n(d(, ~j)) (4) 
j=l k=l m n d" Wm 

which is up to constants the negative Kullback-Leibler divergence between the em­
pirical distribution F(wjldi ) and the model distribution represented by (1). 

In order to derive the Fisher kernel, we have to compute the Fisher scores u(di ; 0), 
i.e. the gradient of l(dd with respect to 0, as well as the Fisher information 1(0) in 
some parameterization 0 [13]. The Fisher kernel at {) is then given by [9] 

(5) 

Computational Considerations For computational reasons we propose to ap­
proximate the (inverse) information matrix by the identity matrix, thereby making 
additional assumptions about information orthogonality. More specifically, we use 
a variance stabilizing parameterization for multinomials - the square-root param­
eterization - which yields an isometric embedding of multinomial families on the 
positive part of a hypersphere [11]. In this parameterization, the above approx­
imation will be exact for the multinomial family (disregarding the normalization 
constraint). We conjecture that it will also provide a reasonable approximation in 
the case of the subfamily defined by the latent class model. 

c. Simplifying assumption: The Fisher information in the square-root param­
eterization can be approximated by the identity matrix. 

Interpretation of Results Instead of going through the details of the derivation 
which is postponed to the end of this section, it is revealing to relate the results back 
to our main problem of defining a similarity function between text documents. We 
will have a closer look at the two contributions reSUlting from different sets of pa­
rameters. The contribution which stems from (square-root transformed) parameters 
P(Zk) is (in a simplified version) given by 

L P(Zk Idi)P(Zk Idn )/ P(Zk) . (6) 
k 

J( is a weighted inner product in the low-dimensional factor representation of the 
documents by mixing weights P(zkldi). This part of the kernel thus computes a 
"topical" overlap between documents and is thereby able to capture synonyms, i.e., 
words with an identical or similar meaning, as well as words referring to the same 
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topic. Notice, that it is not required that di and dn actually have (many) terms in 
common in order to get a high similarity score. 

The contribution due to the parameters P(WjIZk) is of a very different type. Again 
using the approximation of the Fisher matrix, we arrive at the inner product 

K:(di, do) = l( P(Wj Idi ) I'>(wj Ido ) �~� �P�(�z�k�l�d�i�'�;�(�2�~�;�:�;� Ido , Wj) • (7) 

j( has also a very appealing interpretation: It essentially computes an inner product 
between the empirical distributions of di and dn , a scheme that is very popular in 
the context of information retrieval in the vector space model. However, common 
words only contribute, if they are explained by the same factor(s), i.e., if the re­
spective posterior probabilities overlap. This allows to capture words with multiple 
meanings, so-called polysems. For example, in the factors displayed in Figure 1 the 
term "president" occurs twice (as the president of a company and as the president 
of the US). Depending on the document the word occurs in, the posterior proba­
bility will be high for either one of the factors, but typically not for both. Hence, 
the same term used in different context and different meanings will generally not 
increase the similarity between documents, a distinction that is absent in the naive 
inner product which corresponds to the degenerate case of K = 1. 

Since the choice of K determines the coarseness of the identified "topics" and dif­
ferent resolution levels possibly contribute useful information, we have combined 
models by a simple additive combination of the derived inner products. This com­
bination scheme has experimentally proven to be very effective and robust. 

D. Modeling assumption: Similarities derived from latent class decompositions 
at different levels of resolution are additively combined. 

In summary, the emergence of important language phenomena like synonymy and 
polysemy from information-geometric principles is very satisfying and proves in 
our opinion that interesting similarity functions can be rigorously derived, without 
specific domain knowledge and based on few, explicitly stated assumptions (A-D). 

Technical Derivation Define Pjk == 2v'P(wjlzk), then 

8l(dj ) oP(WjIZk) = . fp(wjlzk) P(wjldi ) P(zkJdd 
oP(WjIZk) OPjk V P(wjldi ) 

P(wjlddP(Zkldi' Wj) 

v'P(WjIZk) 

Similarly we define Pk = 2v'P(Zk). Applying Bayes' rule to substitute P(zkldd in 
l(dd (i.e. P(zkldd = P(zk)P(di/zk)/P(di)) yields 

8l(dd 8l(d;) OP(Zk) = v'P(Zk) P(dilzk) �~� P(wjldd P(W ' IZk) 
OPk OP(Zk) OPk P(dd �~� P(WjJdd J 

J 

P(zkJdd �~� P(wj1di)p( I ) P(zkldj ) 
L...J W· Zk �~� �~�=�=�=�=� 

v'P(Zk) j P(wjldi) J v'P(Zk) . 

The last (optional) approximation step makes sense whenever P(wjldj ) �~� P(wjldi ). 

Notice that we have ignored the normalization constraints which would yield a 
(reactive) term that is constant for each multinomial. Experimentally, we have 
observed no deterioration in performance by making these additional simplifications. 






