Potential Boosters ?

Nigel Duffy David Helmbold
Department of Computer Science Department of Computer Science
University of California University of California
Santa Cruz, CA 95064 Santa Cruz, CA 95064
nigeduff@cse.ucsc.edu dph@cse.ucsc. edu

Abstract

Recent interpretations of the Adaboost algorithm view it as per-
forming a gradient descent on a potential function. Simply chang-
ing the potential function allows one to create new algorithms re-
lated to AdaBoost. However, these new algorithms are generally
not known to have the formal boosting property. This paper ex-
amines the question of which potential functions lead to new al-
gorithms that are boosters. The two main results are general sets
of conditions on the potential; one set implies that the resulting
algorithm is a booster, while the other implies that the algorithm
is not. These conditions are applied to previously studied potential
functions, such as those used by LogitBoost and Doom II.

1 Introduction

The first boosting algorithm appeared in Rob Schapire’s thesis [1]. This algorithm
was able to boost the performance of a weak PAC learner [2] so that the resulting
algorithm satisfies the strong PAC learning [3] criteria. We will call any method
that builds a strong PAC learning algorithm from a weak PAC learning algorithm
a PAC boosting algorithm. Freund and Schapire later found an improved PAC
boosting algorithm called AdaBoost [4], which also tends to improve the hypotheses
generated by practical learning algorithms [5].

The AdaBoost algorithm takes a labeled training set and produces a master hy-
pothesis by repeatedly calling a given learning method. The given learning method
is used with different distributions on the training set to produce different base
hypotheses. The master hypothesis returned by AdaBoost is a weighted vote of
these base hypotheses. AdaBoost works iteratively, determining which examples
are poorly classified by the current weighted vote and selecting a distribution on
the training set to emphasize those examples.

Recently, several researchers [6, 7, 8, 9, 10] have noticed that Adaboost is performing
a constrained gradient descent on an exponential potential function of the margins
of the examples. The margin of an example is yF'(z) where y is the +1 valued label
of the example z and F(z) € R is the net weighted vote of master hypothesis F.
Once Adaboost is seen this way it is clear that further algorithms may be derived
by changing the potential function [6, 7, 9, 10].

Potential Boosters? 259

The exponential potential used by AdaBoost has the property that the influence
of a data point increases exponentially if it is repeatedly misclassified by the base
hypotheses. This concentration on the “hard” examples allows AdaBoost to rapidly
obtain a consistent hypothesis (assuming that the base hypotheses have certain
properties). However, it also means that an incorrectly labeled or noisy example
can quickly attract much of the distribution. It appears that this lack of noise-
tolerance is one of AdaBoost’s few drawbacks [11]. Several researchers (7, 8, 9, 10]
have proposed potential functions which do not concentrate as much on these “hard”
examples. However, they generally do not show that the derived algorithms have
the PAC boosting property.

In this paper we return to the original motivation behind boosting algorithms and
ask: “for which potential functions does gradient descent lead to PAC boosting
algorithms” (i.e. boosters that create strong PAC learning algorithms from arbitrary
weak PAC learners). We give necessary conditions that are met by some of the
proposed potential functions (most notably the LogitBoost potential introduced by
Friedman et al. [7]). Furthermore, we show that simple gradient descent on other
proposed potential functions (such as the sigmoidal potential used by Mason et
al. [10]) cannot convert arbitrary weak PAC learning algorithms into strong PAC
learners. The aim of this work is to identify properties of potential functions required
for PAC boosting, in order to guide the search for more effective potentials.

Some potential functions have an additional tunable parameter [10] or change over
time [12]. Our results do not yet apply to such dynamic potentials.

2 PAC Boosting

Here we define the notions of PAC learning! and boosting, and define the notation
used throughout the paper.

A concept C is a subset of the learning domain X'. A random example of C is a pair
(z € X,y € {—1,+1}) where z is drawn from some distribution on X and y = 1 if
z € C and —1 otherwise. A concept class is a set of concepts.

Definition 1 A (strong) PAC learner for concept class C has the property that for
every distribution D on X, all concepts C € C, and all 0 < €,6 < 1/2: with probabil-
ity at least 1 — § the algorithm outputs a hypothesis h where Pplh(z) # C(z)] <e.
The learning algorithm is given C, €, §, and the ability to draw random ezamples of
C (w.r.t. distribution D), and must run in time bounded by poly(1/e,1/48).

Definition 2 A weak PAC learner is similar to a strong PAC learner, except that
it need only satisfy the conditions for a particular 0 < €,00 < 1/2 pair, rather than
for all €,0 pairs.

Definition 3 A PAC boosting algorithm is a generic algorithm which can leverage
any weak PAC learner to meet the strong PAC learning criteria.

In the remainder of the paper we emphasize boosting the accuracy € as it is much
easier to boost the confidence §, see Haussler et al. [13] and Freund [14] for details.
Furthermore, we emphasize boosting by re-sampling, where the strong PAC learner
draws a large sample, and each iteration the weak learning algorithm is called with
some distribution over this sample.

'To simplify the presentation we omit the instance space dimension and target repre-
sentation length parameters.

260 N. Duffy and D. Helmbold

Throughout the paper we use the following notation.

e m is the cardinality of the fixed sample {(z1,%1),---, (Tm,¥m)}-

hi(z) is the +1 valued weak hypothesis created at iteration ¢.

e «; is the weight or vote of h; in the master hypothesis, the a’s may or may
not be normalized so that 34_, @y = 1.

o Fi(z) = E:,=1 (aphe(z)/5E_, @) € R, is the master hypothesis? at iter-
ation {.

® Uy = Yi }::,=1 ay hy (z) is the margin of z; after iteration ; the ¢ sub-
script is often omitted. Note that the margin is positive when the master
hypothesis is correct, and the normalized margin is u; ¢/ E:,=1 ayp.

e p(u) is the potential of an instance with margin u, and the total potential
is i p(us).

e Pp[|,Pg[], and Eg[| are the probability with respect to the unknown
distribution over the domain, and the probability and expectations with
respect to the uniform distribution over the sample, respectively.

Our results apply to total potential functions of the form Y I, p(u;) where p is
positive and strictly decreasing.

3 Leveraging Learners by Gradient Descent

AdaBoost [4] has recently been interpreted as gradient descent independently by
several groups [6, 7, 8, 9, 10]. Under this interpretation AdaBoost is seen as minimiz-
ing the total potential } I_, p(u;) = Y I~, exp(—u;) via feasible direction gradient
descent. On each iteration ¢+ 1, AdaBoost chooses the direction of steepest descent
as the distribution on the sample, and calls the weak learner to obtain a new base
hypothesis h;,. The weight a4, of this new weak hypothesis is calculated to min-
imize? the resulting potential 1~ | p(uitt1) = Y iey exp(— (Uit + +1Yihes1(2i)))-

This gradient descent idea has been generalized to other potential functions [6, 7,
10]. Duffy et al. [9] prove bounds for a similar gradient descent technique using a
non-componentwise, non-monotonic potential function.

Note that if the weak learner returns a good hypothesis h; (with training error at
most € < 1/2), then 1", Dy(zi)yihe(zi) > 1 —2¢ > 0. We set r = 1 — 2¢, and
assume that each base hypothesis produced satisfies Z:’;l Dy(zi)yihe(z;) > 7.

In this paper we consider this general gradient descent approach applied to various
potentials Y I~ p(u;). Note that each potential function p has two corresponding
gradient descent algorithms (see [6]). The un-normalized algorithms (like AdaBoost)
continually add in new weak hypotheses while preserving the old a’s. The normal-
ized algorithms re-scale the a’s so that they always sum to 1. In general, we call
such algorithms “leveraging algorithms”, reserving the term “boosting” for those
that actually have the PAC boosting property.

4 Potentials that Don’t Boost

In this section we describe sufficient conditions on potential functions so that the
corresponding leveraging algorithm does not have the PAC boosting property. We

2The prediction of the master hypothesis on instance z is the sign of Fi(z).
30ur current proofs require that the actual a;’s be no greater than a constant (say 1).
Therefore, this minimizing @ may need to be reduced.

Potential Boosters? 261

apply these conditions to show that two potentials from the literature do not lead
to boosting algorithms.

Theorem 1 Let p(u) be a potential function for which:

1) the derivative, p'(u), is increasing (—p'(u) decreasing) in R, and

2) 38 > 0 such that for all u >0, —fp'(u) > —p'(—2u).
Then neither the normalized nor the un-normalized leveraging algorithms corre-
sponding to potential p have the PAC boosting property.

This theorem is proven by an adversary argument. Whenever the concept class is
sufficiently rich*, the adversary can keep a constant fraction of the sample from
being correctly labeled by the master hypothesis. Thus as the error tolerance e goes
to zero, the master hypotheses will not be sufficiently accurate.

We now apply this theorem to two potential functions from the literature.

Friedman et al. [7] describe a potential they call “Squared Error(p)” where the

yi +1 eFlz1) ? : ,
2 T oFG) o F(_zT) . This potential can be re-written

1 e—u,- — e'U-i e_ﬂi — eui 2

Corollary 1 Potential “Squared Error(p)” does not lead to a boosting algorithm.

potential at z; is (

Proof: This potential satisfies the conditions of Theorem 1. It is strictly decreas-
ing, and the second condition holds for g = 2.

Mason et al. [10] examine a normalized algorithm using the potential pp(u) =
1 —tanh (Au). Their algorithm optimizes over choices of A via cross-validation, and
uses weak learners with slightly different properties. However, we can plug this
potential directly into the gradient descent framework and examine the resulting
algorithms.

Corollary 2 The DOOMII potential pp does not lead to a boosting algorithm for
any fized .

Proof: The potential is strictly decreasing, and the second condition of Theorem 1
holds for g = 1.

Our techniques show that potentials that are sigmoidal in nature do not lead to
algorithms with the PAC boosting property. Since sigmoidal potentials are gen-
erally better over-estimates of the 0,1 loss than the potential used by AdaBoost,
our results imply that boosting algorithms must use a potential with more subtle
properties than simply upper bounding the 0,1 loss.

5 Potential Functions That Boost

In this section we give sufficient conditions on a potential function for it’s corre-
sponding un-normalized algorithm to have the PAC boosting property. This result
implies that AdaBoost [4] and LogitBoost [7] have the PAC boosting property (Al-
though this was previously known for AdaBoost [4], we believe this is a new result
for LogitBoost).

“The VC-dimension 4 concept class consisting of pairs of intervals on the real line is
sufficient for our adversary.

