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Abstract 

N wideband sources recorded using N closely spaced receivers can 
feasibly be separated based only on second order statistics when using 
a physical model of the mixing process. In this case we show that the 
parameter estimation problem can be essentially reduced to considering 
directions of arrival and attenuations of each signal . The paper presents 
two demixing methods operating in the time and frequency domain and 
experimentally shows that it is always possible to demix signals arriving at 
different angles. Moreover, one can use spatial cues to solve the channel 
selection problem and a post-processing Wiener filter to ameliorate the 
artifacts caused by demixing. 

1 Introduction 

Blind source separation (BSS) is capable of dramatic results when used to separate mixtures 
of independent signals. The method relies on simultaneous recordings of signals from two 
or more input sensors and separates the original sources purely on the basis of statistical 
independence between them. Unfortunately, BSS literature is primarily concerned with the 
idealistic instantaneous mixing model. 

In this paper, we formulate a low dimensional and fast solution to the problem of separating 
two signals from a mixture recorded using two closely spaced receivers. Using a physical 
model of the mixing process reduces the complexity of the model and allows one to identify 
and to invert the mixing process using second order statistics only. 

We describe the theoretical basis of the new approach, and then focus on two algorithms, 
which were implemented and successfully applied to extensive sets of real-world data. In 
essence, our separation architecture is a system of adaptive directional receivers designed 
using the principles ofBSS. The method bears resemblance to methods in beamforming [8] 
in that it works by spatial filtering. Array processing techniques [2] reduce noise by 
separating signal space from noise space, which necessitates more receivers than emitters. 
The main differences are that standard beamforming and array processing techniques [8, 
2] are generally strictly concerned with processing directional narrowband signals. The 
difference with BSS [7, 6] is that our approach is model-based and therefore the elements 
of the mixing matrix are highly constrained: a feature that aids in the robust and reliable 
identification of the mixing process. 
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The layout of the paper is as follows. Sections 2 and 3 describe the theoretical foundation of 
the separation method that was pursued. Section 4 presents algorithms that were developed 
and experimental results. Finally we summarize and conclude this work. 

2 Theoretical foundation for the BSS solution 

As a first approximation to the general multi-path model, we use the delay-mixing model. 
In this model, only direct path signal components are considered. Signal components from 
one source arrive with a fractional delay between the time of arrivals at two receivers. By 
fractional delays, we mean that delays between receivers are not generally integer multiples 
of the sampling period. The delay depends on the position of the source with respect 
to the receiver axis and the distance between receivers. Our BSS algorithms demix by 
compensating for the fractional delays. This, in effect, is a form of adaptive beamforming 
with directional notches being placed in the direction of sources of interference [8]. A more 
detailed account of the analytical structure of the solutions can be found in [1]. 

Below we address the case of two inputs and two outputs but there is no reason why the 
discussion cannot be generalized to multiple inputs and multiple outputs. Assume a linear 
mixture of two sources, where source amplitude drops off in proportion to distance: 

1 R-I 1 R-2 Xi(t) = -SI (t - _Z ) + -S2(t - _Z ) (1) 
Ril C Ri2 C 

j = 1, 2, where c is the speed of wave propagation, and Rij indicates the distance from 
receiver i to source j. This describes signal propagation through a uniform non-dispersive 
medium. In the Fourier domain, Equation 1 results in a mixing matrix A( w) given by: 

A(w) = [~lle-jW~ ~12e-jW~ 1 
1 -jw~ 1 _jw!!JJ.. 

R21e c R 22 e c 

(2) 

It is important to note that the columns can be scaled arbitrarily without affecting separation 
of sources because rescaling is absorbed into the sources. This implies that row scaling in 
the demixing matrix (the inverse of A( w» is arbitrary. 

Using the Cosine Rule, Rij can be expressed in terms of the distance Rj of source j to 
the midpoint between two receivers, the direction of arrival of source j, and the distance 
between receivers, d, as follows: 

1 

R;j = [HJ + (~)' + 2(-1)' m Hj COS OJ r (3) 

Expanding the right term above using the binomial expansion and preserving only zeroth 
and first order terms, we can express distance from the receivers to the sources as: 

Rij = ( Rj + 8~j) + (_l)i (~) cosOj (4) 

This approximation is valid within a 5% relative error when d ::; ~. With the substitution 
for Rij and with the redefinition of source j to include the delay due to the term within 
brackets in Equation 4 divided by c, Equation 1 becomes: 

Xi(t) = ~ ~ij .Sj (t+(-l)i·(:c).cosOj ) , i= 1,2 (5) 
J 

In the Fourier domain, equation 5 results in the simplification to the mixing matrix A( w): 

[ 
_1_ e-jwo1 _1_ e-jw02 ] 

A(w) = R Il · . Rl2 . (6) 
_1_ eJW01 _1_ ejw02 
R21· R 22' 
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Here phases are functions of the directions of arrival ()j (defined with respect to the midpoint 
between receivers), the distance between receivers d, and the speed of propagation c: 
Oi = 2dc cos ()i ,i = 1, 2. Rij are unknown, but we can again redefine sources so diagonal 
elements are unity: 

(7) 

where c), C2 are two positive real numbers. In wireless communications sources are 
typically distant compared to antenna distance. For distant sources and a well matched pair 
of receivers c) ~ C2 ~ 1. Equation 7 describes the mixing matrix for the delay model in 
the frequency domain, in terms of four parameters, 0) ,02, c), C2. 

The corresponding ideal demixing matrix W(w), for each frequency w, is given by: 

[ ] _) 1 [e jW02 

W(w) = A(w) = detA(w) -c2 .ejwol (8) 

The outputs, estimating the sources, are: 

[ z)(w) ] _ W w [X)(W) ] _ 1 [ 
Z2(W) - () X2(W) - detA(w) 

_c)e- jW02 ] [ x)(w) ] 
e-; WO l X2(W) 

(9) 
Making the transition back to the time domain results in the following estimate of the 
outputs: 

(10) 

where @ is convolution, and 

(11) 

Formulae 9 and 10 form the basis for two algorithms to be described next, in the time 
domain and the frequency domains. The algorithms have the role of determining the four 
unknown parameters. Note that the filter corresponding to H (w, 0) , 02, C), C2) should be 
applied to the output estimates in order to map back to the original inputs. 

3 Delay and attenuation compensation algorithms 

The estimation of the four unknown parameters 0), 02, C), C2 can be carried out based on 
second order criteria that impose the constraint that outputs are decorrelated ([9, 4, 6, 5]). 

3.1 Time and frequency domain approaches 

The time domain algorithm is based on the idea of imposing the decorrelation constraint 
(Z) (t), Z2(t)} = 0 between the estimates ofthe outputs, as a function of the delays D) and 
D2 and scalar coefficients c) and C2. This is equivalent to the following criterion: 

(12) 

where F(.) measures the cross-correlations between the signals given below, representing 
filtered versions of the differences of fractionally delayed measurements: 
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Z)(t) = h(t, D), D2, e), e2) 0 (X)(t + D2) - e)X2(t») 

Z2(t) = h(t, D) , D2, e) , e2) 0 (e2X) (t + D2) - X2(i») 

F(D), D2, e), e2) = (Z)(t), Z2(t)} 

In the frequency domain, the cross-correlation of the inputs is expressed as follows: 

RX(w) = A(w)Rs(w)AH(w) 

(13) 

( 14) 

The mixing matrix in the frequency domain has the form given in Equation 7. Inverting 
this cross correlation equation yields four equations that are written in matrix form as: 

( 15) 

Source orthogonality implies that the off-diagonal terms in the covariance matrix must be 
zero: 

RT2(W) =0 

Rf)(w) = 0 

(16) 

For far field conditions (i.e. the distance between the receivers is much less than the distance 
from sources) one obtains the following equations: 

The terms a = e- jw1h and b = e-jwoz are functions of the time delays. Note that there is 
a pair of equations of this kind for each frequency. In practice, the unknowns should be 
estimated from data at all available frequencies to obtain a robust estimate. 

3.2 Channel selection 

Up to this point, there was no guarantee that estimated parameters would ensure source 
separation in some specific order. We could not decide a priori whether estimated parameters 
for the first output channel correspond to the first or second source. However, the dependence 
of the phase delays on the angles of arrival suggests a way to break the permutation symmetry 
in source estimation, that is to decide precisely which estimate to present on the first channel 
(and henceforth on the second channel as well). 

The core idea is that directionality and spatial cues provide the information required to 
break the symmetry. The criterion we use is to sort sources in order of increasing delay. 
Note that the correspondence between delays and sources is unique when sources are not 
symmetrical with respect to the receiver axis. When sources are symmetric there is no way 
of distinguishing between their positions because the cosine of the angles of arrival, and 
hence the delay, is invariant to the sign of the angle. 

4 Experimental results 

A robust implementation of criterion 12 averages cross-correlations over a number of 
windows, of given size. More precisely F is defined as follows: 

F( 0),02) = L I(Z) (t), Z2(t)W 
Blocks 

( 18) 
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Normally q = 1 to obtain a robust estimate. Ngo and Bhadkamkar [5] suggest a similar 
criterion using q = 2 without making use of the determinant of the mixing matrix. 

After taking into account all terms from Equation 18, including the determinant of the 
mixing matrix A, we obtain the function to be used for parameter estimation in the frequency 
domain: 

1 I a x b x x 1 x Iq 
F(01,02) = 2· -bRl1 (W) - -R22(W) - abR21(w) - -bRI2(w) (19) 

w { det A} + TJ a a 
where TJ is a (Wiener Filter-like) constant that helps prevent singularities and q is normally 
set to one. 

Computing the separated sources using only time differences leads to highpass filtered 
outputs. In order to implement exactly the theoretical demixing procedure presented one 
has to divide by the determinant of the mixing matrix. Obviously one could filter using the 
inverse of the determinant to obtain optimal results. This can be implemented in the form 
of a Wiener filter. The Wiener filter requires knowledge both ofthe signal and noise power 
spectral densities. This information is not available to us but a reasonable approximation is 
to assume that the (wideband) sources have a flat spectral density and the noise corrupting 
the mixtures is white. In this case, the Wiener Filter becomes: 

H w _ ( {detA(W)}2) 1 
( ) - { det A (w )} 2 + TJ det A (w ) 

(20) 

where the parameter TJ has been empirically set to the variance of the mixture. Applying 
this choice of filter usually dramatically improves the quality of the separated outputs. 

The technique of postprocessing using the determinant of the mixing matrix is perfectly 
general and applies equally well to demixtures computed using matrices of FIR filters. 
The quality of the result depends primarily on the care with which the inverse filter is 
implemented. It also depends on the accuracy of the estimate for the mixing parameters. 
One should avoid using the Wiener filter for near-degenerate mixtures. 

The proof of concept for the theory outlined above was obtained using speech signals which 
if anything pose a greater challenge to separation algorithms because of the correlation 
structure of speech. Two kinds of data are considered in this paper: synthetic direct 
propagation delay data and synthetic mUlti-path data. Data can be characterized along 
two dimensions of difficulty: synthetic vs. real-world, and direct path vs. multi-path. 
Combinations along these dimensions represented the main type of data we used. 

The value of distance between receivers dictates the order of delays that can appear due 
to direct path propagation, which is used by the demixing algorithms. Data was generated 
synthetically employing fractional delays corresponding to the various positions of the 
sources [3]. 

We modeled multi-path by taking into account the decay in signal amplitude due to propa
gation distance as well as the absorption of waves. Only the direct path and one additional 
path were considered. 

The algorithms developed proved successful for separation of two voices from direct path 
mixtures, even where the sources had very similar spectral power characteristics, and for 
separation of one source for multi-path mixtures. Moreover, outputs were free from artifacts 
and were obtained with modest computational requirements. 

Figure 1 presents mean separation results of the first and second channels, which correspond 
to the first and second sources, for various synthetic data sets. Separation depends on the 
angles of arrival. Plots show no separation in the degenerate case of equal or closeby 
angles of arrival, but more than lOdB mean separation in the anechoic case and 5dB in the 
mUlti-path case. 






