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Abstract 

One of the most important problems in visual perception is that of visual in­
variance: how are objects perceived to be the same despite undergoing transfor­
mations such as translations, rotations or scaling? In this paper, we describe a 
Bayesian method for learning invariances based on Lie group theory. We show 
that previous approaches based on first-order Taylor series expansions of inputs 
can be regarded as special cases of the Lie group approach, the latter being ca­
pable of handling in principle arbitrarily large transfonnations. Using a matrix­
exponential based generative model of images, we derive an unsupervised al­
gorithm for learning Lie group operators from input data containing infinites­
imal transfonnations. The on-line unsupervised learning algorithm maximizes 
the posterior probability of generating the training data. We provide experimen­
tal results suggesting that the proposed method can learn Lie group operators for 
handling reasonably large I-D translations and 2-D rotations. 

1 INTRODUCTION 

A fundamental problem faced by both biological and machine vision systems is the recognition 
of familiar objects and patterns in the presence of transfonnations such as translations, rotations 
and scaling. The importance ofthis problem was recognized early by visual scientists such as J. J. 
Gibson who hypothesized that "constant perception depends on the ability of the individual to de­
tect the invariants" [6]. Among computational neuroscientists, Pitts and McCulloch were perhaps 
the first to propose a method for perceptual invariance ("knowing universals") [12]. A number of 
other approaches have since been proposed [5, 7, 10], some relying on temporal sequences of input 
patterns undergoing transfonnations (e.g. [4]) and others relying on modifications to the distance 
metric for comparing input images to stored templates (e.g. [15]). 

In this paper, we describe a Bayesian method for learning in variances based on the notion of contin­
uous transfonnations 'and Lie group theory. We show that previous approaches based on first-order 
Taylor series expansions of images [1, 14] can be regarded as special cases of the Lie group ap­
proach. Approaches based on first-order models can account only for small transfonnations due 
to their assumption of a linear generative model for the transfonned images. The Lie approach on 
the other hand utilizes a matrix-exponential based generative model which can in principle handle 
arbitrarily large transfonnations once the correct transfonnation operators have been learned. Us­
ing Bayesian principles, we derive an on-line unsupervised algorithm for learning Lie group opera­
tors from input data containing infinitesimal transfonnations. Although Lie groups have previously 
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been used in visual perception [2], computer vision [16] and image processing [9], the question of 
whether it is possible to learn these groups directly from input data has remained open. Our pre­
liminary experimental results suggest that in the two examined cases of l-D translations and 2-D 
rotations, the proposed method can learn the corresponding Lie group operators with a reasonably 
high degree of accuracy, allowing the use of these learned operators in transformation-invariant 
vision. 

2 CONTINUOUS TRANSFORMATIONS AND LIE GROUPS 

Suppose we have a point (in general, a vector) 10 which is an element in a space F. Let T 10 denote a 
transformation of the point 10 to another point, say It. The transformation operator T is completely 
specified by its actions on all points in the space F. Suppose T belongs to a family of operators 
T. We will be interested in the cases where I is a group i.e. there exists a mapping f : I x I -t 
I from pairs of transformations to another transformation such that (a) f is associative, (b) there 
exists a unique identity transformation, and (c) for every TEl, there exists a unique inverse 
transformation of T. These properties seem reasonable to expect in general for transformations on 
images. 

Continuous transformations are those which can be made infinitesimally small. Due to their favor­
able properties as described below, we will be especially concerned with continuous transforma­
tion groups or Lie groups. Continuity is associated with both the transformation operators T and 
the group T. Each TEl is assumed to implement a continuous mapping from F -t F. To be 
concrete, suppose T is parameterized by a single real number x. Then, the group I is continu­
ous if the function T{x) : 1R -t I is continuous i.e. any TEl is the image of some x E 1R 
and any continuous variation of x results in a continuous variation of T . Let T{O) be equivalent 
to the identity transformation. Then, as x -t 0, the transformation T{x) gets arbitrarily close to 
identity. Its effect on 10 can be written as (to first order in x): T{x)/o ~ (1 + xG)/o for some 
matrix G which is known as the generator of the transformation group. A macroscopic transfor­
mation It = I{x) = T{x)/o can be produced by chaining together a number of these infinitesimal 
transformations. For example, by dividing the parameter x into N equal parts and performing each 
transformation in tum, we obtain: 

I{x) = {1 + (X/N)G)N 10 (1) 

In the limit N -t 00, this expression reduces to the matrix exponential equation: 

I{x) = ezG 10 (2) 

where 10 is the initial or "reference" input. Thus, each of the elements of our one-parameter Lie 
group can be written as: T{x) = ezG • The generatorG ofthe Lie group is related to the derivative 
ofT{x) with respect to x: d~T = GT. This suggests an alternate way of deriving Equation 2. 
Consider the Taylor series expansion of a transformed input 1 (x) in terms of a previous input 1 (O): 

d/{O) Jl. I{O) x2 

I{x) = I{O) + ~x + ---;J;22 +... (3) 

where x denotes the relative transformation between I{x) and I{O). Defining d~1 = GI for some 
operator matrix G, we can rewrite Equation 3 as: I{x) = ezG 10 which is the same as equation 2 
with 10 = I{O). Thus, some previous approaches based on first-order Taylor series expansions 
[ 1, 14] can be viewed as special cases ofthe Lie group model. 

3 LEARNING LIE TRANSFORMATION GROUPS 

Our goal is to learn the generators G of particular Lie transformation groups directly from input data 
containing examples of infinitesimal transformations. Note that learning the generator of a trans­
formation effectively allows us to remain invariant to that transformation (see below). We assume 
that during natural temporal sequences of images containing transformations, there are "small" im­
age changes corresponding to deterministic sets of pixel changes that are independent of what the 
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Figure 1: Network Architecture and Interpolation Function. (a) An implementation of the proposed ap­
proach to invariant vision involving two cooperating recurrent networks, one estimating transformations and 
the other estimating object features. The latter supplies the reference image 1(0) to the transformation net­
work. (b) A locally recurrent elaboration of the transformation network for implementing Equation 9. The 
network computes e",GI(O) = 1(0) + Lk(xkGk jk!)I(O). (c) The interpolation function Q used to generate 
training data (assuming periodic, band-limited signals). 

actual pixels are. The rearrangements themselves are universal as in for example image transla­
tions. The question we address is: can we learn the Lie group operator G given simply a series of 
"before" and "after" images? 

Let the n x 1 vector 1(0) be the "before" image and I(x) the "after" image containing the infinites­
imal transformation. Then, using results from the previous section, we can write the following 
stochastic generative model for images: 

I(x) = e",GI(O) + n (4) 

where n is assumed to be a zero-mean Gaussian white noise process with variance (J2. Since learn­
ing using this full exponential generative model is difficult due to multiple local minima, we restrict 
ourselves to transformations that are infinitesimal. The higher order terms then become negligible 
and we can rewrite the above equation in a more tractable form: 

~I = xGI(O) + n (5) 
where ~I = I( x) - 1(0) is the difference image. Note that although this model is linear, the gener­
ator G learned using infinitesimal transformations is the same matrix that is used in the exponential 
model. Thus, once learned, this matrix can be used to handle larger tr,ansformations as well (see 
experimental results). 

Suppose we are given M image pairs as data. We wish to find the n x n matrix G and the trans­
formations x which generated the data set. To do so, we take a Bayesian maximum a posteriori 
approach using Gaussian priors on x and G. The negative log of the posterior probability of gen­
erating the data is given by: 

1 1 1 
E = -logP[G, xll(x), 1(0)] = 2(J2 (~I-xGI(O))T (~I-xGI(O))+ 2(J;x2 + 2gTC-lg (6) 

where (J~ is the variance of the zero-mean Gaussian prior on x, g is the n2 x 1 vector form of G 
and C is the covariance matrix associated with the Gaussian prior on G. Extending this equation 
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to multiple image data is accomplished straightforwardly by summing the data-driven tenn over 
the image pairs (we assume G is fixed for all images although the transfonnation x may vary). For 
the experiments, u, U x and C were chosen to be fixed scalar values but it may be possible to speed 
up learning and improve accuracy by choosing C based on some knowledge of what we expect for 
infinitesimal image transfonnations (for example, we may define each entry in C to be a function 
only of the distance between pixels associated with the entry and exploit the fact that C needs to 
be symmetric; the efficacy of this choice is currently under investigation). 

The n x n generator matrix G can be learned in an unsupervised manner by perfonning gradient 
descent on E, thereby maximizing the posterior probability of generating the data: 

. 8E T 
G = -a 8G = a(al - xGI(O»(xl(O» - ac(G) (7) 

where a is a positive constant that governs the learning rate and c(G) is the n x n matrix fonn of 
the n 2 x 1 vector c-1 g. The learning rule for G above requires the value of x for the current image 
pair to be known. We can estimate x by perfonning gradient descent on E with respect to x (using 
a fixed previously learned value for G): 

x = -f3 8
8
E = f3(GI(O»T(al - xGI(O» - ~x (8) 
x U x 

The learning process thus involves alternating between the fast estimation of x for the given image 
pair and the slower adaptation ofthe generator matrix G using this x. Figure 1 (a) depicts a pos­
sible network implementation of the proposed approach to invariant vision. The implementation, 
which is reminiscent of the division oflabor between the dorsal and ventral streams in primate vi­
sual cortex [3], uses two parallel but cooperating networks, one estimating object identity and the 
other estimating object transfonnations. The object network is based on a standard linear gener­
ative model of the fonn: 1(0) = Ur + DO where U is a matrix of learned object "features" and 
r is the feature vector for the object in 1(0) (see, for example, [11, 13]). Perceptual constancy is 
achieved due to the fact that the estimate of object identity remains stable in the first network as the 
second network attempts to account for any transfonnations being induced in the image, appropri­
ately conveying the type of transfonnation being induced in its estimate for x (see [14] for more 
details). 

The estimation rule for x given above is based on a first-order model (Equation 5) and is therefore 
useful only for estimating small (infinitesimal) transfonnations. A more general rule for estimating 
larger transfonnations is obtaining by perfonning gradient descent on the optimization function 
given by the matrix-exponential generative model (Equation 4): 

x = -y(exGGI(O»)T(I(x) - exGI(O» _lx (9) u; 
Figure 1 (b) shows a locally recurrent network implementation of the matrix exponential compu­
tation required by the above equation. 

4 EXPERIMENTAL RESULTS 

Training Data and Interpolation Function. For the purpose of evaluating the algorithm, we gen­
erated synthetic training data by subjecting a randomly generated image (containing unifonnly ran­
dom pixel intensities) to a known transfonnation. Consider a given I-D image 1(0) with image 
pixels given by I (j), j = 1, ... , N. To be able to continuously transfonn 1(0) sampled at discrete 
pixel locations by infinitesimal (sub-pixel) amounts, we need to employ an interpolation function. 
We make use of the Shannon-Whittaker theorem [8] stating that any band-limited signal I (j), with 
j being any real number, is uniquely specified by its sufficiently close equally spaced discrete sam­
ples. Assuming that our signal is periodic i.e. I(j + N) = I(j) for all j. the Shannon-Whittaker 

theorem in one dimension can be written as: I(j) = E::~ I(m) E:-oo sinc[1r(j - m - Nr)] 
where sinc[x] = sin(x)Jx. After some algebraic manipulation and simplification, this can be 

reduced to: I(j) = E::~ I(m)Q(j - m) where the interpolation function Q is given by: 
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Figure 2: Learned Lie Operators for 1·0 Translations. (a) Analytically-derived 20 x 20 Lie operator 
matrix G, operator for the 10th pixel (10th row of G), and plot of real and imaginary parts of the eigenvalues 
of G. (b) Learned G matrix, 10th operator, and plot of eigenvalues of the learned matrix. 

Q(x) = (1/N)[1 + 2 �L�:�:�~�~�-�l� cos(271'px/N)]. Figure 1 (c) shows this interpolation function. To 

translate 1(0) by an infinitesimal amount x E �~�,�w�e� use: I(j + x) = �L�:�~�:�~� I(m)Q(j + x - m). 
Similarly, to rotate or translate 2-D images, we use the 2-D analog of the above. In addition to 
being able to generate images with known transformations, the interpolation function also allows 
one to derive an analytical expression for the Lie operator matrix directly from the derivative of 
Q. This allows us to evaluate the results oflearning. Figure 2 (a) shows the analytically-derived G 
matrix for I-D infinitesimal translations of 20-pixel images (bright pixels = positive values, dark 
= negative). Also shown alongside is one of the rows of G (row 10) representing the Lie operator 
centered on pixel 10. 

Learning 1·D Translations. Figure 2 (b) shows the results of using Equation 7 and 50, 000 training 
image pairs forlearning the generator matrix for I-D translations in 20-pixel images. The randomly 
generated first image of a training pair was translated left or right by 0.5 pixels (C-1 = 0.0001 and 
learning rate a = 0.4 was decreased by 1.0001 after each training pair). Note that as expected for 
translations, the rows of the learned G matrix are identical except for a shift: the same differential 
operator (shown in Figure 2 (b» is applied at each image location. A comparison of the eigenval­
ues of the learned matrix with those of the analytical matrix (Figure 2) suggests that the learning 
algorithm was able to learn a reasonably good approximation of the true generator matrix (to within 
an arbitrary multiplicative scaling factor). To further evaluate the learned matrix G, we ascertained 
whether G could be used to generate arbitrary translations of a given reference image using Equa­
tion 2. The results are encouraging as shown in Figure 3 (a), although we have noticed a tendency 
for the appearance of some artifacts in translated images if there is significant high-frequency con­
tent in the reference image. 

Estimating Large Transformations. The learned generator matrix can be used to estimate large 
translations in images using Equation 9. Unfortunately, the optimization function can contain local 
minima (Figure 3 (b» . The local minima however tend to be shallow and of approximately the same 
value, with a unique well-defined global minimum. We therefore searched for the global minimum 
by performing gradient descent with several equally spaced starting values and picked the minimum 
of the estimated values after convergence. Figure 3 (c) shows results ofthis estimation process. 

Learning 2·D Rotations. We have also tested the learning algorithm in 2-D images using image 
plane rotations. Training image pairs were generated by infinitesimally rotating images with ran­
dom pixel intensities 0.2 radians clockwise or counterclockwise. The learned operator matrix (for 
three different spatial scales) is shown in Figure 4 (a). The accuracy of these matrices was tested 






