Mapping a Manifold of Perceptual Observations

Part of Advances in Neural Information Processing Systems 10 (NIPS 1997)

Bibtex Metadata Paper


Joshua Tenenbaum


Nonlinear dimensionality reduction is formulated here as the problem of trying to find a Euclidean feature-space embedding of a set of observations that preserves as closely as possible their intrinsic metric structure - the distances between points on the observation manifold as measured along geodesic paths. Our isometric feature mapping procedure, or isomap, is able to reliably recover low-dimensional nonlinear structure in realistic perceptual data sets, such as a manifold of face images, where conventional global mapping methods find only local minima. The recovered map provides a canonical set of globally meaningful features, which allows perceptual transformations such as interpolation, extrapolation, and analogy - highly nonlinear transformations in the original observation space - to be computed with simple linear operations in feature space.