For valid generalization, the size of the
weights is more important than the size
of the network

Peter L. Bartlett
Department of Systems Engineering
Research School of Information Sciences and Engineering
Australian National University
Canberra, 0200 Australia
Peter.Bartlett@anu.edu.au

Abstract

This paper shows that if a large neural network is used for a pattern
classification problem, and the learning algorithm finds a network
with small weights that has small squared error on the training
patterns, then the generalization performance depends on the size
of the weights rather than the number of weights. More specifi-
cally, consider an £-layer feed-forward network of sigmoid units, in
which the sum of the magnitudes of the weights associated with
each unit is bounded by A. The misclassification probability con-
verges to an error estimate (that is closely related to squared error
on the training set) at rate O((cA)“¢+1)/2,/(logn)/m) ignoring
log factors, where m is the number of training patterns, n is the
input dimension, and ¢ is a constant. This may explain the gen-
eralization performance of neural networks, particularly when the
number of training examples is considerably smaller than the num-
ber of weights. It also supports heuristics (such as weight decay
and early stopping) that attempt to keep the weights small during
training.

1 Introduction

Results from statistical learning theory give bounds on the number of training exam-
ples that are necessary for satisfactory generalization performance in classification
problems, in terms of the Vapnik-Chervonenkis dimension of the class of functions
used by the learning system (see, for example, [13, 5]). Baum and Haussler [4]
used these results to give sample size bounds for multi-layer threshold networks

Generalization and the Size of the Weights in Neural Networks 135

that grow at least as quickly as the number of weights (see also [7]). However,
for pattern classification applications the VC-bounds seem loose; neural networks
often perform successfully with training sets that are considerably smaller than the
number of weights. This paper shows that for classification problems on which neu-
ral networks perform well, if the weights are not too big, the size of the weights
determines the generalization performance.

In contrast with the function classes and algorithms considered in the VC-theory,
neural networks used for binary classification problems have real-valued outputs,
and learning algorithms typically attempt to minimize the squared error of the
network output over a training set. As well as encouraging the correct classification,
this tends to push the output away from zero and towards the target values of
{—=1,1}. It is easy to see that if the total squared error of a hypothesis on m
examples is no more than me, then on no more than me/(1 — a)? of these examples
can the hypothesis have either the incorrect sign or magnitude less than o.

The next section gives misclassification probability bounds for hypotheses that are
“distinctly correct” in this way on most examples. These bounds are in terms of
a scale-sensitive version of the VC-dimension, called the fat-shattering dimension.
Section 3 gives bounds on this dimension for feedforward sigmoid networks, which
imply the main results. The proofs are sketched in Section 4. Full proofs can be
found in the full version [2].

2 Notation and bounds on misclassification probability

Denote the space of input patterns by X. The space of labels is {—1,1}. We
assume that there is a probability distribution P on the product space X x {—1,1},
that reflects both the relative frequency of different input patterns and the relative
frequency of an expert’s classification of those patterns. The learning algorithm
uses a class of real-valued functions, called the hypothesis class H. An hypothesis h
is correct on an example (z,y) if sgn(h(z)) = y, where sgn(er) : R — {—1,1} takes
value 1 iff @ > 0, so the misclassification probability (or error) of h is defined as

erp(h) = P{(z,) € X x {-1,1} : sgn(h(z)) # v} .

The crucial quantity determining misclassification probability is the fat-shattering
dimension of the hypothesis class H. We say that a sequence z;,...,24 of d points
from X is shattered by H if functions in H can give all classifications of the sequence.
That is, for allb = (by,...,bm) € {—1,1}™ there is an h in H satisfying sgn(h(z;)) =
b;. The VC-dimension of H is defined as the size of the largest shattered sequence.’
For a given scale parameter v > 0, we say that a sequence z;,...,z4 of d points
from X is y-shattered by H if there is a sequence ry, ..., rq of real values such that
for all b = (by,...,bm) € {—1,1}™ there is an h in H satisfying (h(z;) — ri)b; > v.
The fat-shattering dimension of H at v, denoted fatg (y), is the size of the largest
v-shattered sequence. This dimension reflects the complexity of the functions in the
class H, when examined at scale 4. Notice that fatg(y) is a nonincreasing function
of 4. The following theorem gives generalization error bounds in terms of fatg(y).

A related result, that applies to the case of no errors on the training set, will appear
in [12].

Theorem 1 Define the input space X, hypothesis class H, and probability distri-
bution P on X x {—1,1} as above. Let 0 < § < 1/2, and 0 < ¥ < 1. Then,
with probability 1 — & over the training sequence (z1,¥1),...,(Zm,Ym) of m labelled

!In fact, according to the usual definition, this is the VC-dimension of the class of
thresholded versions of functions in H.

136 P. L. Bartlett

examples, every hypothesis h in H satisfies

erp(h) < = I{i: ()] < v or sgn(h(z:)) # w} + e(2,m,)
where
e2(y,m,8) = %(d In(50em/d) log,(1250m) + In(4/96)) , (1)

and d = faty (v/16).

2.1 Comments

It is informative to compare this result with the standard VC-bound. In that case,
the bound on misclassification probability is

erp(h) < — I{i : sgn(h(z:)) # |+ (= (dlog(m/d) + log(1/3)))

where d = VCdim(H) and c is a constant. We shall see in the next section that
there are function classes H for which VCdim(H) is infinite but fatg(y) is finite
for all 4 > 0; an example is the class of functions computed by any two-layer neu-
ral network with an arbitrary number of parameters but constraints on the size of
the parameters. It is known that if the learning algorithm and error estimates are
constrained to make use of the sample only by considering the proportion of train-
ing examples that hypotheses misclassify, there are distributions P for which the
second term in the VC-bound above cannot be improved by more than log factors.
Theorem 1 shows that it can be improved if the learning algorithm makes use of
the sample by considering the proportion of training examples that are correctly
classified and have |h(z;)| < 7. It is possible to give a lower bound (see the full
paper [2]) which, for the function classes considered here, shows that Theorem 1
also cannot be improved by more than log factors.

The idea of using the magnitudes of the values of h(z;) to give a more precise
estimate of the generalization performance was first proposed by Vapnik in [13]
(and was further developed by Vapnik and co-workers). There it was used only for
the case of linear hypothesis classes. Results in [13] give bounds on misclassification
probability for a test sample, in terms of values of h on the training and test data.
This result is extended in [11], to give bounds on misclassification probability (that
is, for unseen data) in terms of the values of A on the training examples. This is
further extended in [12] to more general function classes, to give error bounds that
are applicable when there is a hypothesis with no errors on the training examples.
Lugosi and Pintér [9] have also obtained bounds on misclassification probability in
terms of similar properties of the class of functions containing the true regression
function (conditional expectation of y given z). However, their results do not extend
to the case when the true regression function is not in the class of real-valued
functions used by the estimator.

1/2

It seems unnatural that the quantity v is specified in advance in Theorem 1, since
it depends on the examples. The full paper [2] gives a similar result in which the
statement is made uniform over all values of this quantity.

3 The fat-shattering dimension of neural networks

Bounds on the VC-dimension of various neural network classes have been established
(see [10] for a review), but these are all at least linear in the number of parameters.
In this section, we give bounds on the fat-shattering dimension for several neural
network classes.

Generalization and the Size of the Weights in Neural Networks 137

We assume that the input space X is some subset of R™. Define a sigmoid unit
as a function from R* to R, parametrized by a vector of weights w € R*. The
unit computes z + o(z - w), where ¢ is a fixed bounded function satisfying a
Lipchitz condition. (For simplicity, we ignore the offset parameter. It is equivalent
to including an extra input with a constant value.) A multi-layer feed-forward
sigmoid network of depth £ is a network of sigmoid units with a single output unit,
which can be arranged in a layered structure with £ layers, so that the output of
a unit passes only to the inputs of units in later layers. We will consider networks
in which the weights are bounded. The relevant norm is the £; norm: for a vector
w € R¥, define ||w|; = Zle |w;|. The following result gives a bound on the fat-
shattering dimension of a (bounded) linear combination of real-valued functions, in
terms of the fat-shattering dimension of the basis function class. We can apply this
result in a recursive fashion to give bounds for single output feed-forward networks.

Theorem 2 Let F be a class of functions that map from X to [-M /2, M /2], such
that 0 € F and, for all f in F, —f € F. For A > 0, define the class H of
weight-bounded linear combinations of functions from F as

k

H= {Zws‘fs‘ k€N, fi € F, [Jwljy < A} -
i=1

Suppose v > 0 is such that d = fatp(y/(324)) > 1. Then faty(y) <

(cM?A%d/y?)log®(M Ad/¥), for some constant c.

Gurvits and Koiran [6] have shown that the fat-shattering dimension of the class of
two-layer networks with bounded output weights and linear threshold hidden units
is O ((A%n?%/4%)log(n/v)), when X = R™. As a special case, Theorem 2 improves
this result.

Notice that the fat-shattering dimension of a function class is not changed by more
than a constant factor if we compose the functions with a fixed function satisfying
a Lipschitz condition (like the standard sigmoid function). Also, for X = R" and
H = {z — z;} we have fatg(y) < logn for all 4. Finally,for H ={z—w-z:w€
R"} we have faty(y) < n for all 4. These observations, together with Theorem 2,
give the following corollary. The O(-) notation suppresses log factors. (Formally,

f=0(g) if f = o(g'*?) for all & > 0.)

Corollary 3 If X CR™ and H is the class of two-layer sigmoid networks with the
weights in the output unit satisfying ||w||; < A, then fatg(y) = O (A%n/4?).

If X = {z €R":||z|]|c < B} and the hidden unit weights are also bounded, then
fatu(y) = O (B*A%(logn)/%).

Applying Theorem 2 to this result gives the following result for deeper networks.
Notice that there is no constraint on the number of hidden units in any layer, only
on the total magnitude of the weights associated with a processing unit.

Corollary 4 For some constant c, if X C R™ and H is the class of depth £ sigmoid
networks in which the weight vector w associated with each unit beyond the first
layer satisfies ||w||; < A, then fatg () = O (n(cA)H¢-1) /y2E-1)),

IfX = {zeR":||z||o < 1?} and the weights in the first layer units also satisfy
lw||ls < A, then fatg(y) = O (B?(cA)4“+Y) /4% logn).

In the first part of this corollary, the network has fat-shattering dimension similar
to the VC-dimension of a linear network. This formalizes the intuition that when
the weights are small, the network operates in the “linear part” of the sigmoid, and
so behaves like a linear network.

