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Abstract 

A new regression technique based on Vapnik's concept of support 
vectors is introduced. We compare support vector regression (SVR) 
with a committee regression technique (bagging) based on regression 
trees and ridge regression done in feature space. On the basis of these 
experiments, it is expected that SVR will have advantages in high 
dimensionality space because SVR optimization does not depend on the 
dimensionality of the input space. 

1. Introduction 

In the following, lower case bold characters represent vectors and upper case bold 
characters represent matrices. Superscript "t" represents the transpose of a vector. y 
represents either a vector (in bold) or a single observance of the dependent variable in the 
presence of noise. yCp) indicates a predicted value due to the input vector x(P) not seen in 
the training set. 

Suppose we have an unknown function G(x) (the "truth") which is a function of a vector 
x (termed input space). The vector xt = [.XI,X2, ... ,Xd] has d components where d is 
termed the dimensionality of the input space. F(x, w) is a family of functions 
parameterized by w. w is that value of w that minimizes a measure of error between 
G(x) and F(x, w). Our objective is to estimate w with w by observing the N training 
instances Vj, j=l, .. ·,N. We will develop two apprOximations for the truth G(x). The first 
one is F 1 (x, w) which we term a feature space representation. One (of many) such 
feature vectors is: 

Zt_[x2 ... X2d X X ... x·x· ... Xd X·-J X ... x 1] - I, , , 1 2, , I l' ' -I u' .. , d, 

which is a quadratic function of the input space components. Using the feature space 
representation, then F 1 (x, w) = z tw , that is, F 1 (x, w) is linear in feature space although 
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it is quadratic in input space. In general, for a p'th order polynomial and d'th 
dimensional input space, the feature dimensionality / of w is 

p+d-l . 

/ = L CJ-l 
;=d-l 

h Cn n! 
were k = k !(n-k)! 

The second representation is a support vector regression (SVR) representation that was 
developed by Vladimir Vapnik (1995): 

N 

F2(x,w)=L(at-a;)(v~x+1)P + b 
;=1 

F 2 is an expansion explicitly using the training examples. The rationale for calling it a 
support vector representation will be clear later as will the necessity for having both an 
a and an a rather than just one multiplicative constant. In this case we must choose the 
2N + 1 values of a; at and b. If we expand the term raised to the p'th power, we find/ 
coefficients that multiply the various powers and cross product terms of the components 
of x. So, in this sense Fl looks very similar to F2 in that they have the same number of 
terms. However F} has/free coefficients while F2 has 2N+1 coefficients that must be 
determined from the N training vectors. 

We let a represent the 2N values of aj and at. The optimum values for the components 
of w or a depend on our definition of the loss function and the objective function. Here 
the primal objective function is: 

N 
ULL[Yj-F(vj, w)]+11 w 112 

j=l 

where L is a general loss function (to be defined later) and F could be F 1 or F 2, Yj is the 
observation of G(x) in the presence of noise, and the last term is a regularizer. The 
regularization constant is U which in typical developments multiplies the regularizer but 
is placed in front of the first term for reasons discussed later. 

If the loss function is quadratic, i.e., we L[·]=[·J2, and we let F=F 1, i.e., the feature space 
representation, the objective function may be minimized by using linear algebra 
techniques since the feature space representation is linear in that space. This is termed 
ridge regression (Miller, 1990). In particular let V be a matrix whose i'th row is the i'th 
training vector represented in feature space (including the constant term "1" which 
represents a bias). V is a matrix where the number of rows is the number of examples 
(N) and the number of columns is the dimensionality of feature space f Let E be the tx/ 
diagonal matrix whose elements are 11U. y is the Nxl column vector of observations of 
the dependent variable. We then solve the following matrix formulation for w using a 
linear technique (Strang, 1986) with a linear algebra package (e.g., MA TLAB): 

Vly = [VtV +E] w 
The rationale for the regularization term is to trade off mean square error (the first term) 
in the objective function against the size of the w vector. If U is large, then essentially we 
are minimizing the mean square error on the training set which may give poor 
generalization to a test sel. We find a good value of U by varying U to find the best 
performance on a validation set and then applying that U to the test set. 
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Let us now define a different type of loss function termed an E-insensitive loss (Vapnik, 
1995): 

L _ { 0 if I Yj-F2(X;,w) 1< E 

- I Yj-F 2(Xj, w) I - E otherwise 

This defines an E tube (Figure 1) so that if the predicted value is within the tube the loss 
is zero, while if the predicted pOint is outside the tube, the loss is the magnitude of the 
difference between the predicted value and the radius E of the tube. 

Specifically, we minimize: 
N N 1 

�U�(�~�~� • + �~�~�)� + "2(wt w) 

where �~�j� or �~�.� is zero if the sample point is inside the tube. If the observed point is 
"above" the tube, l;; is the positive difference between the observed value and E and aj 
will be nonzero. Similary, �~�j�.� will be nonzero if the observed point is below the tube 
and in this case a7 will be nonzero. Since an observed point can not be simultaneously 
on both sides of the tube, either aj or a7 will be nonzero, unless the point is within the 
tube, in which case, both constants will be zero. If U is large, more emphasis is placed on 
the error while if U is small, more emphasis is placed on the norm of the weights leading 
to (hopefully) a better generalization. The constraints are: (for all i, i=1,N) 

�Y�i�-�(�w�t�V�i�)�-�-�b�~�~�;� 

�(�w�t�v�i�)�+�b�-�y�j�~�~�;� 
l;; �*�~� 

�~�~� 
The corresponding Lagrangian is: 

1 N N N 
L=-(wtw) + �U�(�L�~�*�j� + �L�~�i�)� - �L�a�;�[�y�i�-�{�w�t�v�i�)�-�b�+�E�~�;�*�]� 

2 i=1 i=1 i=1 
N N 

- �L�a�i�[�(�w�t�v�i�)�+�b�-�Y�i�+�E�~�i�]� - �L�(�1�7�~�7�+�Y�;�~�i�)� 
i=1 i=1 

where the 1i and aj are Lagrange multipliers. 

We find a saddle point of L (Vapnik. 1995) by differentiating with respect to Wi , b, and �~� 
which results in the equivalent maximization of the (dual space) objective function: 

N N 1 N 
W(a,a*) = �-�E�~�(�a�7� +Clj)+ �~�y�j�(�a�~� -Clj) - �"�2�.�~� �(�a�7�-�C�l�j�)�(�a�;�-�a�i�)�(�v�~�v�j� + 11 

1=1 1=1 I.J=I 

with the constraints: 

�~�C�l�j�~�U� �~�a�j�·�~�U� i=1, ... ,N 
N N 
La; = Lai 
i=1 i=1 

We must find N Largrange multiplier pairs (ai, (7). We can also prove that the product of 
Cl; and a; is zero which means that at least one of these two terms is zero. A Vi 
corresponding to a non-zero Clj or a; is termed a support vector. There can be at most N 
support vectors. Suppose now, we have a new vector x(P), then the corresponding 










