
Promoting Poor Features to Supervisors:
Some Inputs Work Better as Outputs

Rich Caruana
JPRC and

Carnegie Mellon University
Pittsburgh, PA 15213
caruana@cs.cmu.edu

Virginia R. de Sa
Sloan Center for Theoretical Neurobiology and

W. M. Keck Center for Integrative Neuroscience
University of California, San Francisco CA 94143

desa@phy.ucsf.edu

Abstract
In supervised learning there is usually a clear distinction between
inputs and outputs - inputs are what you will measure, outputs
are what you will predict from those measurements. This paper
shows that the distinction between inputs and outputs is not this
simple. Some features are more useful as extra outputs than as
inputs. By using a feature as an output we get more than just the
case values but can. learn a mapping from the other inputs to that
feature. For many features this mapping may be more useful than
the feature value itself. We present two regression problems and
one classification problem where performance improves if features
that could have been used as inputs are used as extra outputs
instead. This result is surprising since a feature used as an output
is not used during testing.

1 Introduction
The goal in supervised learning is to learn functions that map inputs to outputs
with high predictive accuracy. The standard practice in neural nets is to use all
features that will be available for the test cases as inputs, and use as outputs only
the features to be predicted.

Extra features available for training cases that won't be available during testing
can be used as extra outputs that often benefit the original output[2][5]. Other
ways of adding information to supervised learning through outputs include hints[l]'
tangent-prop[7], and EBNN[8]. In unsupervised learning it has been shown that
inputs arising from different modalities can provide supervisory signals (outputs for
the other modality) to each other and thus aid learning [3][6].

If outputs are so useful, and since any input could be used as an output, would some
inputs be more useful as outputs? Yes. In this paper we show that in supervised
backpropagation learning, some features are more useful as outputs than as inputs.
This is surprising since using a feature as an output only extracts information from
it during training; during testing it is not used.

390 R. Caruana and V. R. de Sa

This paper uses the following terms: The Main Task is the output to be learned.
The goal is to improve performance on the Main Task. Regular Inputs are the
features provided as inputs in all experiments. Extra Inputs (Extra Outputs) are
the extra features when used as inputs (outputs). STD is standard backpropagation
using the Regular Inputs as inputs and the Main Task as outputs. STD+IN uses
the Extra Features as Extra Inputs to learn the Main Task. STD+OUT uses the
Extra Features, but as Extra Outputs learned in parallel with the Main Task, using
just the Regular Inputs as inputs.

2 Poorly Correlated Features
This section presents a simple synthetic problem where it is easy to see why using a
feature as an extra output is better than using that same feature as an extra input.

Consider the following function:

F1(A,B) = SIGMOID(A+B), SIGMOID(x) = 1/(1 + e(-x)

The STD net in Figure 1a has 20 inputs, 16 hidden units, and one output. We use
backpropagation on this net to learn FlO. A and B are uniformly sampled from the
interval [-5,5]. The network's input is binary codes for A and B. The range [-5,5] is
discretized into 210 bins and the binary code of the resulting bin number is used as
the input coding. The first 10 input units receive the code for A and the second 10
that for B. The target output is the unary real (unencoded) value F1(A,B).

A:B'I'D

fully connected
hidden layer

!lain OUtput ,

~
.:81'0+11 IIIlin OUtput ,

folly cOMocted ~
hidden layer

~~oo~
"'''''''' """"I' binary inputs

coding for A
binary inputs
coding for B

a • g u I a r I n put •

"11'"'" ""'''"' I binary inputs
coding for A

binary inputs
codinq for B

aegular Input.

Jlxtra IDput

C I BTDtOUT !laiD OUtput Bxtra OUtput

fully connected
hidden layer

, ,

""'''''' '''''''''' binary inputs
codino for A

binary inputs
coding for B

Ragular Input.

Figure 1: Three Neural Net Architectures for Learning F1

Backpropagation is done with per-epoch updating and early stopping. Each trial
uses new random training, halt, and test sets. Training sets contain 50 patterns.
This is enough data to get good performance, but not so much that there is not
room for improvement. We use large halt and test sets - 1000 cases each - to
minimize the effect of sampling error in the measured performances. Larger halt
and test sets yield similar results. We use this methodology for all the experiments
in this paper.

Table 1 shows the mean performance of 50 trials of STD Net 1a with backpropaga
tion and early stopping.

N ow consider a similar function:

J:2(A,B) = SIGMOID(A-B).

Suppose, in addition to the 10-bit codings for A and B, you are given the unencoded
unary value F2(A,B) as an extra input feature. Will this extra input help you learn
F1(A,B) better? Probably not. A+B and A-B do not correlate for random A and B.
The correlation coefficient for our training sets is typically less than ±0.0l. Because

Promoting Poor Features to Supervisors

Table 1: Mean Test Set Root-Mean-Squared-Error on F1

Network I Trials I Mean RMSE I Significance I
STD 50 0.0648 -

STD+IN 50 0.0647 ns
STD+OUT 50 0.0631 0.013*

391

of this, knowing the value of F2(A,B) does not tell you much about the target value
F1(A,B) (and vice-versa).

F1(A,B)'s poor correlation with F2(A,B) hurts backprop's ability to learn to use
F2(A,B) to predict F1(A,B). The STD+IN net in Figure 1b has 21 inputs - 20
for the binary codes for A and B, and an extra input for F2(A,B). The 2nd line in
Table 1 shows the performance of STD+IN for the same training, halting, and test
sets used by STD; the only difference is that there is an extra input feature in the
data sets for STD+ IN. Note that the performance of STD+ IN is not significantly
different from that ofSTD - the extra information contained in the feature F2(A,B)
does not help backpropagation learn F1(A,B) when used as an extra input.

If F2(A,B) does not help backpropagation learn Fl(A,B) when used as an input,
should we ignore it altogether? No. F1(A,B) and F2(A,B) are strongly related.
They both benefit from decoding the binary input encoding to compute the subfea
tures A and B. If, instead of using F2(A,B) as an extra input, it is used as an extra
output trained with backpropagation, it will bias the shared hidden layer to learn
A and B better, and this will help the net better learn to predict Fl(A,B).

Figure 1c shows a net with 20 inputs for A and B, and 2 outputs, one for Fl(A,B)
and one for F2(A,B). Error is back-propagated from both outputs, but the per
formance of this net is evaluated only on the output F1(A,B) and early stopping
is done using only the performance of this output. The 3rd line in Table 1 shows
the mean performance of 50 trials of this multitask net on F1(A,B). Using F2(A,B)
as an extra output significantly improves performance on F1(A,B). Using the ex
tra feature as an extra output is better than using it as an extra input. By using
F2(A,B) as an output we make use of more than just the individual output values
F2(A , B) but learn to extract information about the function mapping the inputs to
F2(A,B). This is a key difference between using features as inputs and outputs.

The increased performance of STD+OUT over STD and STD+IN is not due to
STD+OUT reducing the capacity available for the main task FlO. All three nets
- STD, STD+IN, STD+OUT - perform better with more hidden units. (Because
larger capacity favors STD+OUT over STD and STD+IN, we report results for the
moderate sized 16 hidden unit nets to be fair to STD and STD+IN.)

3 Noisy Features
This section presents two problems where extra features are more useful as inputs
if they have low noise, but which become more useful as outputs as their noise
increases. Because the extra features are ideal features for these problems, this
demonstrates that what we observed in the previous section does not depend on
the extra features being contrived so that their correlation with the main task is
low - features with high correlation can still be more useful as outputs.

Once again, consider the main task from the previous section:

F1(A,B) = SIGMOID(A+B)

392

Now consider these extra features:

EF(A) = A + NOISE...sCALE * Noisel

EF(B) = B + NOISE...sCALE * Noise2

R. Caruana and V. R. de Sa

Noisel and Noise2 are uniformly sampled on [-1,1]. If NOISE...sCALE is not too
large, EF(A) and EF(B) are excellent input features for learning FI(A,B) because
the net can avoid learning to decode the binary input representations. However, as
NOISE_SCALE increases, EF(A) and EF(B) become less useful and it is better for
the net to learn FI(A,B) from the binary inputs for A and B.

As before, we try using the extra features as either extra inputs or as extra outputs.
Again, the training sets have 50 patterns, and the halt and test sets have 1000
patterns. Unlike before, however, we ran preliminary tests to find the best net size.
The results showed 256 hidden units to be about optimal for the STD nets with
early stopping on this problem.

0.06
0.18

0.17

w 0.055
(/)

w
~ 0.16 :::i:

ex:
1ii
(/)

! 0.05

0.045

'STD+IN"
"STD+OUr -+-

"STD" · B··

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Feature Noise Scale

ex:

0.15

0.14

0.13

"STD+IN"
' STD+OUT' -+-

'STD" ·B--

0.12 "---'---'-_'----'----'-_L..--'-----'---JL..-~
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Feature Noise Scale

Figure 2: STD, STD+IN, and STD+OUT on FI (left) and F3 (right)

Figure 2a plots the average performance of 50 trials of STD+IN and STD+OUT
as NOISE...sCALE varies from 0.0 to 10.0. The performance of STD, which does
not use EF(A) and EF(B), is shown as a horizontal line; it is independent of
NOISE_SCALE. Let's first examine the results of STD+IN which uses EF(A) and
EF(B) as extra inputs. As expected, when the noise is small, using EF(A) and
EF(B) as extra inputs improves performance considerably. As the noise increases,
however, this improvement decreases. Eventually there is so much noise in EF(A)
and EF(B) that they no longer help the net if used as inputs. And, if the noise
increases further, using EF(A) and EF(B) as extra inputs actually hurts. Finally,
as the noise gets very large, performance asymptotes back towards the baseline.

Using EF(A) and EF(B) as extra outputs yields quite different results. When the
noise is low, they do not help as much as they did as extra inputs. As the noise
increases, however, at some point they help more as extra outputs than as extra
inputs, and never hurt performance the way the noisy extra inputs did.

Why does noise cause STD+IN to perform worse than STD? With a finite training
sample, correlations between noisy inputs and the main task cause the network to
use the noisy inputs. To the extent that the main task is a function of the noisy
inputs, it must pass the noise to the output, causing the output to be noisy. Also,
as the net comes to depend on the noisy inputs, it depends less on the noise-free
binary inputs. The noisy inputs explain away some of the training signal, so less is
available to encourage learning to decode the binary inputs.

Promoting Poor Features to Supervisors 393

Why does noise not hurt STD+OUT as much as it hurts STD+IN? As outputs, the
net is learning the mapping from the regular inputs to EF(A) and EF(B). Early
in training, the net learns to interpolate through the noise and thus learns smooth
functions for EF(A) and EF(B) that have reasonable fidelity to the true mapping.
This makes learning less sensitive to the noise added to these features.

3.1 Another Problem
F1(A,B) is only mildly nonlinear because A and B do not go far into the tails of
the SIGMOID. Do the results depend on this smoothness? To check, we modified
F1(A,B) to make it more nonlinear. Consider this function:

F3(A,B) = SIGMOID(EXPAND(SIGMOID(A)-SIGMOID(B)))

where EXPAND scales the inputs from (SIGMOID(A)-SIGMOID(B)) to the range
[-12.5,12.5]' and A and B are drawn from [-12.5,12.5]. F3(A,B) is significantly more
nonlinear than F1(A,B) because the expanded scales of A and B, and expanding
the difference to [-12.5,12.5] before passing it through another sigmoid, cause much
of the data to fall in the tails of either the inner or outer sigmoids.

Consider these extra features:

EF(A) = SIGMOID(A) + NOISE...sCALE * Noise1

EF(B) = SIGMOID(B) + NOISE...sCALE * Noise2

where Noises are sampled as before. Figure 2B shows the results of using extra
features EF(A) and EF(B) as extra inputs or as extra outputs. The trend is similar
to that in Figure 2A but the benefit of STD+OUT is even larger at low noise. The
data for 2a and 2b are generated using different seeds, 2a used steepest descent and
Mitre's Aspirin simulator, 2b used conjugate gradient and Toronto's Xerion simu
lator, and F1 and F3 do not behave as similarly as their definitions might suggest.
The similarity between the two graphs is due to the ubiquity of the phenomena, not
to some small detail of the test functions or how the experiments were run.

4 A Classification Problem
This section presents a problem that combines feature correlation (Section 1) and
feature noise (Section 2) into one problem. Consider the 1-D classification problem,
shown in Figure 3, of separating two Gaussian distributions with means 0 and 1,
and standard deviations of 1. This problem is simple to learn if the 1-D input
is coded as a single, continuous input but can be made harder by embedding it
non-linearly in a higher dimensional space. Consider encoding input values defined
on [0.0,15.0] using an interpolated 4-D Gray code(GC); integer values are mapped
to a 4-D binary Gray code and intervening non-integers are mapped linearly to
intervening 4-D vectors between the binary Gray codes for the bounding integers.
As the Gray code flips only one bit between neighboring integers this involves simply
interpolating along the 1 dimension in the 4-D unit cube that changes. Thus 3.4 is
encoded as .4(GC(4) - GC(3)) + GC(3).

The extra feature is a 1-D value correlated (with correlation p) with the original
unencoded regular input, X. The extra feature is drawn from a Gaussian distribution
with mean p x (X - .5) + .5 and standard deviation)(1 - p2). Examples of the
distributions of the unencoded original dimension and the extra feature for various
correlations are shown in Figure 3. This problem has been carefully constructed so
that the optimal classification boundary does not change as p varies.

Consider the extreme cases. At p = 1, the extra feature is exactly an unencoded

