On the Effect of Analog Noise in
Discrete-Time Analog Computations

Wolfgang Maass Pekka Orponen
Institute for Theoretical Computer Science Department of Mathematics
Technische Universitit Graz* University of Jyviaskylat
Abstract

We introduce a model for noise-robust analog computations with
discrete time that is flexible enough to cover the most important
concrete cases, such as computations in noisy analog neural nets
and networks of noisy spiking neurons. We show that the presence
of arbitrarily small amounts of analog noise reduces the power of
analog computational models to that of finite automata, and we
also prove a new type of upper bound for the VC-dimension of
computational models with analog noise.

1 Imntroduction

Analog noise is a serious issue in practical analog computation. However there exists
no formal model for reliable computations by noisy analog systems which allows us
to address this issue in an adequate manner. The investigation of noise-tolerant
digital computations in the presence of stochastic failures of gates or wires had been
initiated by [von Neumann, 1956]. We refer to [Cowan, 1966] and [Pippenger, 1989]
for a small sample of the nimerous results that have been achieved in this direction.
In all these articles one considers computations which produce a correct output not
with perfect reliability, but with probability > 3 +p (for some parameter p € (0, 3).
The same framework (with stochastic failures of gates or wires) has been applied
to analog neural nets in [Siegelmann, 1994].

The abovementioned approaches are insufficient for the investigation of noise in
analog computations, because in analog computations one has to be concerned not
only with occasinnal total failures of gates or wires, but also with “imprecision”, i.e.
with omnipresent smaller (and occasionally larger) perturbations of analog outputs
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of internal computational units. These perturbations may for example be given
by Gaussian distributions. Therefore we introduce and investigate in this article
a notion of noise-robust computation by noisy analog systems where we assume
that the values of intermediate analog values are moved according to some quite
arbitrary probability distribution. We consider — as in the traditional framework for
noisy digital computations — arbitrary computations whose output is correct with
some given probability > 3 + p (for p € (0,3]) . We will restrict our attention to
analog computation with digital output. Since we impose no restriction (such as
continuity) on the type of operations that can be performed by computational units
in an analog computational system, an output unit of such system can convert an
analog value into a binary output via “thresholding”.

Our model and our Theorem 3.1 are somewhat related to the analysis of probabilistic
finite automata in [Rabin, 1963]. However there the finiteness of the state space
simplifies the setup considerably. [Casey, 1996] addresses the special case of analog
computations on recurrent neural nets (for those types of analog noise that can
move an internal state at most over a distance €) whose digital output is perfectly
reliable (i.e. p =1/2 in the preceding notation).!

The restriction to perfect reliability in [Casey, 1996] has immediate consequences
for the types of analog noise processes that can be considered, and for the types of
mathematical arguments that are needed for their investigation. In a computational
model with perfect reliability of the output it cannot happen that an intermediate
state s occurs at some step ¢t both in a computation for an input z that leads to
output “0” , and at step t in a computation for the same input “z” that leads to
output “1” . Hence an analysis of perfectly reliable computations can focus on par-
titions of intermediate states s according to the computations and the computation
steps where they may occur.

Apparently many important concrete cases of noisy analog computations require a
different type of analysis. Consider for example the special case of a sigmoidal neural
net (with thresholding at the output), where for each input the output of an internal
noisy sigmoidal gate is distributed according to some Gaussian distribution (perhaps
restricted to the range of all possible output values which this sigmoidal gate can
actually produce). In this case an intermediate state s of the computational system
is a vector of values which have been produced by these Gaussian distributions.
Obviously each such intermediate state s can occur at any fixed step t in any
computation (in particular in computations with different network output for the
same network input). Hence perfect reliability of the network output is unattainable
in this case. For an investigation of the actual computational power of a sigmoidal
neural net with Gaussian noise one has to drop the requirement of perfect reliability
of the output, and one has to analyze how probable it is that a particular network
output is given, and how probable it is that a certain intermediate state is assumed.
Hence one has to analyze for each network input and each step t the different

!There are relatively few examples for nontrivial computations on common digital or
analog computational models that can achieve perfect reliability of the output in spite of
noisy internal components. Most constructions of noise-robust computational models rely
on the replication of noisy computational units (see [von Neumann, 1956], [Cowan, 1966]).
The idea of this method is that the average of the outputs of k identical noisy computational
units (with stochastically independent noise processes) is with high probability close to the
expected value of their output, if k is sufficiently large. However for any value of k there
exists in general a small but nonzero probability that this average deviates strongly from
its expected value. In addition, if one assumes that the computational unit that produces
the output of the computations is also noisy, one cannot expect that the reliability of the
output of the computation is larger than the reliability of this last computational unit.
Consequently there exist many methods for reducing the error-probability of the output
to a small value, but these methods cannot achieve error probability 0 at the output.
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probability distributions over intermediate states s that are induced by computations
of the noisy analog computational system. In fact, one may view the set of these
probability distributions over intermediate states s as a generalized set of “states” of
a noisy analog computational system. In general the mathematical structure of this
generalized set of “states” is substantially more complex than that of the original
set of intermediate states s . We have introduced in [Maass, Orponen, 1996] some
basic methods for analyzing this generalized set of “states”, and the proofs of the
main results in this article rely on this analysis.

The preceding remarks may illustrate that if one drops the assumption of perfect
reliability of the output, it becomes more difficult to prove upper bounds for the
power of noisy analog computations. We prove such upper bounds even for the case
of stochastic dependencies among noises for different internal units, and for the case
of nonlinear dependencies of the noise on the current internal state. Our results also
cover noisy computations in hybrid analog/digital computational models, such as for
example a neural net combined with a binary register, or a network of noisy spiking
neurons where a neuron may temporarily assume the discrete state “not-firing”.
Obviously it becomes quite difficult to analyze the computational effect of such
complex (but practically occuring) types of noise without a rigorous mathematical
framework. We introduce in section 2 a mathematical framework that is general
enough to subsume all these cases. The traditional case of noisy digital computations
is captured as a special case of our definition.

One goal of our investigation of the effect of analog noise is to find out which features
of analog noise have the most detrimental effect on the computational power of an
analog computational system. This turns out to be a nontrivial question.? As a
first step towards characterizing those aspects and parameters of analog noise that
have a strong impact on the computational power of a noisy analog system, the
proof of Theorem 3.1 (see [Maass, Orponen, 1996]) provides an explicit bound on
the number of states of any finite automaton that can be implemented by an analog
computational system with a given type of analog noise. It is quite surprising to
see on which specific parameters of the analog noise the bound depends. Similarly
the proofs of Theorem 3.4 and Theorem 3.5 provide explicit (although very large)
upper bounds for the VC-dimension of noisy analog neural nets with batch input,
which depend on specific parameters of the analog noise.

2 Preliminaries: Definitions and Examples

An analog discrete-time computational system (briefly: computational system) M
is defined in a general way as a 5-tuple (Q,p°, F, L, s), where Q, the set of states,
is a bounded subset of R?, p° € Q is a distinguished initial state, F C § is the
set of accepting states, L is the input domain, and s: ) x ¥ — § is the transition
function. To avoid unnecessary pathologies, we impose the conditions that 2 and
F are Borel subsets of R?, and for each a € £, s(p, a) is a measurable function of
p. We also assume that ¥ contains a distinguished null value U, which may be used
to pad the actual input to arbitrary length. The nonnull input domain is denoted
by Zo = L — {U}.

2For example, one might think that analog noise which is likely to move an internal
state over a large distance is more harmful than another type of analog noise which keeps
an internal state within its neighborhood. However this intuition is deceptive. Consider
the extreme case of analog noise in a sigmoidal neural net which moves a gate output
z € [—1,1] to a value in the e-neighborhood of —z . This type of noise moves some values
x over large distances, but it appears to be less harmful for noise-robust computing than
noise which moves z to an arbitrary value in the 10e-neighborhood of = .















