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Abstract 

The Fourier transform of boolean functions has come to play an 
important role in proving many important learnability results. We 
aim to demonstrate that the Fourier transform techniques are also 
a useful and practical algorithm in addition to being a powerful 
theoretical tool. We describe the more prominent changes we have 
introduced to the algorithm, ones that were crucial and without 
which the performance of the algorithm would severely deterio­
rate. One of the benefits we present is the confidence level for each 
prediction which measures the likelihood the prediction is correct. 

1 INTRODUCTION 

Over the last few years the Fourier Transform (FT) representation of boolean func­
tions has been an instrumental tool in the computational learning theory commu­
nity. It has been used mainly to demonstrate the learnability of various classes of 
functions with respect to the uniform distribution. The first connection between the 
Fourier representation and learnability of boolean functions was established in [6] 
where the class ACo was learned (using its FT representation) in O(nPoly-log(n)) 

time. The work of [5] developed a very powerful algorithmic procedure: given a 
function and a threshold parameter it finds in polynomial time all the Fourier co­
efficients of the function larger than the threshold. Originally the procedure was 
used to learn decision trees [5], and in [8, 2, 4] it was used to learn polynomial size 
DNF. The FT technique applies naturally to the uniform distribution, though some 
of the learnability results were extended to product distribution [1, 3] . 
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A great advantage of the FT algorithm is that it does not make any assumptions 
on the function it is learning. We can apply it to any function and hope to obtain 
"large" Fourier coefficients. The prediction function simply computes the sum of 
the coefficients with the corresponding basis functions and compares the sum to 
some threshold. The procedure is also immune to some noise and will be able to 
operate even if a fraction of the examples are maliciously misclassified. Its drawback 
is that it requires to query the target function on randomly selected inputs. 

We aim to demonstrate that the FT technique is not only a powerful theoretical 
tool, but also a practical one. In the process of implementing the Fourier algorithm 
we enhanced it in order to improve the accuracy of the hypothesis we generate while 
maintaining a desirable run time. We have added such feartures as the detection 
of inaccurate approximations "on the fly" and immediate correction of the errors 
incurred at a minimal cost. The methods we devised to choose the "right" parame­
ters proved to be essential in order to achieve our goals. Furthermore, when making 
predictions, it is extremely beneficial to have the prediction algorithm supply an 
indicator that provides the confidence level we have in the prediction we made. Our 
algorithm provides us naturally with such an indicator as detailed in Section 4.1. 

The paper is organized as follows: section 2 briefly defines the FT and describes 
the algorithm. In Section 3 we describe the experiments and their outcome and in 
Section 4 the enhancements made. We end with our conclusions in Section 5. 

2 FOURIER TRANSFORM (FT) THEORY 

In this section we briefly introduce the FT theory and algorithm. its connection to 
learning and the algorithm that finds the large coefficients. A comprehensive survey 
of the theoretical results and proofs can be found in [7]. 

We consider boolean functions of n variables: f : {O, l}n -t {-I, I}. We define the 
inner product: < g, f >= 2-n L::XE{O,l}R f(x)g(x) = E[g . f], where E is the ex­
pected value with respect to the uniform distribution. The basis is defined as follows: 

for each z E {O,l}n, we define the basis function :\:z(Xl,···,Xn) = (_1)L::~=lx;z •. 
Any function of n boolean inputs can be uniquely expressed as a linear combination 
of the basis functions . For a function f, the zth Fourier coefficient of f is denoted 
by j(z) , i.e. , f(x) = L::zE{O,l}R j(z)XAx) . The Fourier coefficients are computed 

by j(z) =< f, Xz > and we call z the coefficient-name of j(z). We define at-sparse 
function to be a function that has at most t non-zero Fourier coefficients. 

2.1 PREDICTION 

Our aim is to approximate the target function f by a t-sparse function h. In many 
cases h will simply include the "large" coefficients of f. That is, if A = {Zl' ... , zm} 
is the set of z's for which j(Zi) is "large", we set hex) = L::z;EA aiXz;(x), where 

at is our approximation of j(Zi). The hypothesis we generate using this process, 
hex), does not have a boolean output. In order to obtain a boolean prediction 
we use Sign(h(x)), i.e., output +1 if hex) 2 0 and -1 if hex) < o. We want to 
bound the error we get from approximating f by h using the expected error squared, 
E[(J - h )2]. It can be shown that bounding it bounds the boolean prediction error 
probability, i.e., Pr[f(x) f. sign(h(x))] ~ E[(J - h)2] . For a given t, the t-sparse 
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hypothesis h that minimizes E[(J - h)2] simply includes the t largest coefficients of 
f. Note that the more coefficients we include in our approximation and the better 
we approximate their values, the smaller E[(J - h )2] is going to be. This provides 
us with the motivation to find the "large" coefficients. 

2.2 FINDING THE LARGE COEFFICIENTS 

The algorithm that finds the "large" coefficients receives as inputs a function 1 (a 
black-box it can query) and an interest threshold parameter (J > 0. It outputs a list 
of coefficient-names that (1) includes all the coefficients-names whose correspond­
ing coefficients are "large", i.e., at least (J , and (2) does not include "too many" 
coefficient-names. The algorithm runs in polynomial time in both 1/() and n . 

SUBROUTINE search( a) 
IF TEST[J, a, II] THEN IF lal = n THEN OUTPUT a 

ELSE search(aO); search(al); 

Figure 1: Subroutine search 

The basic idea of the algorithm is to perform a search in the space of the coefficient­
names of I. Throughout the search algorithm (see Figure (1)) we maintain a prefix 
of a coefficient-name and try to estimate whether any of its extensions can be 
a coefficient-name whose value is "large". The algorithm commences by calling 
search(A) where A is the empty string. On each invocation it computes the pred­
icate TEST[/, a, (J]. If the predicate is true, it recursively calls search(aO) and 
search(al). Note that if TEST is very permissive we may reach all the coeffi­
cients, in which case our running time will not be polynomial; its implementation 
is therefore of utmost interest. Formally, T EST[J, a, (J] computes whether 

Exe{O,l}n-"E;e{O,lP.[J(YX)Xa(Y)] 2: (J2, where k = Iiali . (1) 

Define la(x) = L:,ae{O,l}n-" j(aj3)x.,a(x). It can be shown that the expected value 
in (1) is exactly the sum of the squares of the coefficients whose prefix is a , i.e., 

Exe {o,l}n-"E;e{o,l}d/(yx)x.a(Y)] = Ex[/~(x)] = L:,ae{o,l}n-" p(aj3), implying 

that if there exists a coefficient Ii( a,8)1 2: () , then E[/;] 2: (J2 . This condition 
guarantees the correctness of our algorithm, namely that we reach all the "large" 
coefficients. We would like also to bound the number of recursive calls that search 
performs. We can show that for at most 1/(J2 of the prefixes of size k, TEST[!, a , (J] 
is true. This bounds the number of recursive calls in our procedure by O(n/(J2). 

In TEST we would like to compute the expected value, but in order to do so 
efficiently we settle for an approximation of its value. This can be done as follows: 
(1) choose ml random Xi E {a, l}n-k, (2) choose m2 random Yi,j E {a, l}k , (3) 
query 1 on Yi,jXi (which is why we need the query model-to query f on many 
points with the same prefix Xi) and receive I(Yi,j xd, and (4) compute the estimate 

as, Ba = ';1 L:~\ (~~ L:~l I(Yi,iXdXa(Yi,j)f . Again , for more details see [7]. 

3 EXPERIMENTS 

We implemented the FT algorithm (Section 2.2) and went forth to run a series of 
experiments. The parameters of each experiment include the target function , (J , ml 
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and m2. We briefly introduce the parameters here and defer the detailed discussion. 
The parameter () determines the threshold between "small" and "large" coefficients, 
thus controlling the number of coefficients we will output. The parameters wI and 
w2 determine how accurately we approximate the TEST predicate. Failure to ap­
proximate it accurately may yield faulty, even random, results (e.g., for a ludicrous 
choice of m1 = 1 and m2 = 1) that may cause the algorithm to fail (as detailed in 
Section 4.3). An intelligent choice of m1 and m2 is therefore indispensable. This 
issue is discussed in greater detail in Sections 4.3 and 4.4. 

Figure 2: Typical frequency plots and typical errors . Errors occur in two cases: (1) the algorithm 
predicts a +1 response when the actual response is -1 (the lightly shaded area), and (2) the algorithm 
predicts a -1 response , while the true response is +1 (the darker shaded area) . 

Figures (3)-(5) present representative results of our experiments in the form of 
graphs that evaluate the output hypothesis of the algorithm on randomly chosen 
test points . The target function, I, returns a boolean response, ±1, while the FT 
hypothesis returns a real response. We therefore present, for each experiment, a 
graph constituting of two curves: the frequency of the values of the hypothesis, 
h( x), when I( x) = +1, and the second curve for I( x) = -1. If the two curves 
intersect, their intersection represents the inherent error the algorithm makes. 

Figure 3: Decision trees of depth 5 and 3 with 41 variables . The 5-deep (3-deep) decision tree 
returns -1 about 50% (62.5%) of the time . The results shown above are for values (J = 0.03, ml = 100 
and m2 = 5600 «(J = 0.06, ml = 100 and m2 = 1300). Both graphs are disjoint, signifying 0% error. 

4 RESULTS AND ALGORITHM ENHANCEMENTS 

4.1 CONFIDENCE LEVELS 

One of our most consistent and interesting empirical findings was the distribution 
of the error versus the value of the algorithm's hypothesis: its shape is always that 
of a bell shaped curve. Knowing the error distribution permits us to determine with 
a high (often 100%) confidence level the result for most of the instances, yielding 
the much sought after confidence level indicator. Though this simple logic thus far 
has not been supported by any theoretical result, our experimental results provide 
overwhelming evidence that this is indeed the case. 

Let us demonstrate the strength of this technique: consider the results of the 16-term 
DNF portrayed in Figure (4) . If the algorithm's hypothesis outputs 0.3 (translated 
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Figure 4: 16 terlD DNF. This (randomly generated) DNF of 40 variables returns -1 about 61 % of 
the time. The results shown above are for the values of 9 = 0.02, m2 = 12500 and ml = 100. The 
hypothesis uses 186 non-zero coefficients. A total of 9.628% error was detected. 

into 1 in boolean terms by the Sign function), we know with an 83% confidence 
level that the prediction is correct. If the algorithm outputs -0.9 as its prediction, 
we can virtually guarantee that the response is correct. Thus, although the total 
error level is over 9% we can supply a confidence level for each prediction. This is 
an indispensable tool for practical usage of the hypothesis. 

4.2 DETERMINING THE THRESHOLD 

Once the list of large coefficients is built and we compute the hypothesis h( x), we 
still need to determine the threshold, a, to which we compare hex) (i.e., predict +1 
iff hex) > a). In the theoretical work it is assumed that a = 0, since a priori one 
cannot make a better guess. We observed that fixing a's value according to our 
hypothesis, improves the hypothesis. a is chosen to minimize the error with respect 
to a number of random examples. 

Figure 5: 8 terlD DNF. This (randomly generated) DNF of 40 variables returns -1 about 43% of the 
time. The results shown above are for the values of 9 = 0.03, m2 = 5600 and ml = 100. The hypothesis 
consists of 112 non-zero coefficients. 

For example, when trying to learn an 8-term DNF with the zero threshold we will 
receive a total of 1.22% overall error as depicted in Figure (5). However, if we 
choose the threshold to be 0.32, we will get a diminished error of 0.068%. 

4.3 ERROR DETECTION ON THE FLY - RETRY 

During our experimentations we have noticed that at times the estimate Ba for 
may be inaccurate. A faulty approximation may result in the abortion of the 

traversal of "interesting" subtreees, thus decreasing the hypothesis' accuracy, or in 
traversal of "uninteresting" subtrees, thereby needlessly increasing the algorithm's 
runtime. Since the properties of the FT guarantee that = + 
we expect Ba :::::: Bao + Bal . Whenever this is not true, we conclude that at least 
one of our approximations is somewhat lacking. We can remedy the situation by 






