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Abstract

We estimate the number of training samples required to ensure that
the performance of a neural network on its training data matches
that obtained when fresh data is applied to the network. Existing
estimates are higher by orders of magnitude than practice indicates.
This work seeks to narrow the gap between theory and practice by
transforming the problem into determining the distribution of the
supremum of a random field in the space of weight vectors, which
in turn is attacked by application of a recent technique called the
Poisson clumping heuristic.

1 INTRODUCTION AND KNOWN RESULTS

We investigate the tradeoffs among network complezity, training set size, and sta-
tistical performance of feedforward neural networks so as to allow a reasoned choice
of network architecture in the face of limited training data. Nets are functions
n(z; w), parameterized by their weight vector w € W C R4, which take as input
points ¢ € R¥. For classifiers, network output is restricted to {0, 1} while for fore-
casting it may be any real number. The architecture of all nets under consideration
is N, whose complexity may be gauged by its Vapnik-Chervonenkis (VC) dimension
v, the size of the largest set of inputs the architecture can classify in any desired way
(‘shatter’). Nets 7 € A are chosen on the basis of a training set 7 = {(z:, %) }7-;.
These n samples are i.i.d. according to an unknown probability law P. Performance
of a network is measured by the mean-squared error

E(w) = E(n(z;w)-y)* (1)
= P(n(z;w) #y) (for classifiers) (2)
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and a good (perhaps not unique) net in the architecture is w® = arg mingew &(w).
To select a net using the training set we employ the empirical error

1 n
vr(w) = — 3 (n(zi; w) - u:)? (3)
i=1

sustained by 7(:;w) on the training set 7. A good choice for a classifier is then
w* = arg mingew v7(w). In these terms, the issue raised in the first sentence of the
section can be restated as, “How large must n be in order to ensure £(w*)—E&(w°) <
¢ with high probability?”
For purposes of analysis we can avoid dealing directly with the stochastically chosen
network w* by noting

E(w*) = E(w°) < lvr(w*) — E(w®)| + |vr(w’) — £(w")] < 2mp Jriw)—olw)

A bound on the last quantity is also useful in its own right.

The best-known result is in (Vapnik, 1982), introduced to the neural network com-
munity by (Baum & Haussler, 1989):

P(sup [vr(w) — Ew)| > < 680 gnciz 4
weEW v
This remarkable bound not only involves no unknown constant factors, but holds

independent of the data distribution P. Analysis shows that sample sizes of about
n. = (4v/e*)log 3/¢ (5)
are enough to force the bound below unity, after which it drops exponentially to

zero. Taking € = .1, v = 50 yields n, = 68000, which disagrees by orders of
magnitude with the experience of practitioners who train such simple networks.

More recently, Talagrand (1994) has obtained the bound

2 v

P(sup |vr(w) — E(w)| > €) £ K, (ﬂ’_‘_f__,) e=ne’, (6)
wEW v

yielding a sufficient condition of order v/e?, but the values of K, and K3 are inac-

cessible so the result is of no practical use.

Formulations with finer resolution near £(w) = 0 are used. Vapnik (1982) bounds
P(supyew lvr(w) — E(w)|/E(w)Y/? > €)—note E(w)/? ~ Var(vr(w))/? when
&(w) ~ 0—while Blumer et al. (1989) and Anthony and Biggs (1992) work with
P(supyew |vr(w) — E(w)| 140y (v7(w)) > €). The latter obtain the sufficient condi-
tion

n. = (5.8v/¢) log12/e (7
for nets, if any, having v7(w) = 0. If one is guaranteed to do reasonably well on
the training set, a smaller order of dependence results.

Results (Turmon & Fine, 1993) for perceptrons and P a Gaussian mixture imply
that at least v/280¢? samples are needed to force £(w*) — £(w®) < 2¢ with high
probability. (Here w* is the best linear discriminant with weights estimated from
the data.) Combining with Talagrand’s result, we see that the general (not assuming
small v7(w)) functional dependence is v/€.
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2 APPLYING THE POISSON CLUMPING HEURISTIC

We adopt a new approach to the problem. For the moderately large values of n
we anticipate, the central limit theorem informs us that \/n[vr(w) — £(w)] has
nearly the distribution of a zero-mean Gaussian random variable. It is therefore
reasonable! to suppose that

P(sup |vr(w) — E(w)| > €) = P(sup |Z(w)| 2 ev/n) < 2P(sup Z(w) > ev/n)
weEW weW wew
where Z(w) is a Gaussian process with mean zero and covariance

R(w,v) = EZ(w)Z(v) = Cov((y — n(z;w))?, (y — n(z;v))?)
The problem about extrema of the original empirical process is equivalent to one
about extrema of a corresponding Gaussian process.

The Poisson clumping heuristic (PCH), introduced in the remarkable (Aldous,
1989), provides a general tool for estimating such exceedance probabilities. Con-
sider the excursions above level b (= €3/n > 1) by a stochastic process Z(w). At
left below, the set {w : Z(w) > b} is seen as a group of “clumps” scattered in weight
space W. The PCH says that, provided Z has no long-range dependence and the
level b is large, the centers of the clumps fall according to the points of a Poisson
process on W, and the clump shapes are independent. The vertical arrows (below
right) illustrate two clump centers (points of the Poisson process); the clumps are
the bars centered about the arrows.

Z(w)

b

== — S
w | 1 | IT lw

In fact, with py(w) = P(Z(w) > b), Cy(w) the size of a clump located at w, and

A (w) the rate of occurrence of clump centers, the fundamental equation is

po(w) = Ay (w) ECy(w). (8)
The number of clumps in W is a Poisson random variable Ny with parameter
Jww Ae(w) dw. The probability of a clump is P(N; > 0) = 1 —exp(— J,,, As(w) dw) ~
jz).b(w) dw where the approximation holds because our goal is to operate in a

regime where this probability is near zero. Letting ®(b) = P(N(0,1) > b) and
o?(w) = R(w, w), we have py(w) = ®(b/o(w)). The fundamental equation becomes

&(b/o(w))

It remains only to find the mean clump size EC(w) in terms of the network archi-
tecture and the statistics of (z, y).

P(sup Z(w) > b) ~
weW

'See ch. 7 of (Pollard, 1984) for treatment of some technical details in this limit.
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3 POISSON CLUMPING FOR SMOOTH PROCESSES

Assume Z(w) has two mean-square derivatives in w. (If the network activation
functions have two derivatives in w, for example, Z(w) will have two almost sure
derivatives.) Z then has a parabolic approximation about some wyg via its gradient
G = VZ(w) and Hessian matrix H = VVZ(w) at wo. Provided Z; > b, that is
that there is a clump at wg, simple computations reveal

(2(Zo — b) — GTH-1G)¥/?
[H[/2

where k4 is the volume of the unit ball in R? and |- | is the determinant. The mean

clump size is the expectation of this conditioned on Z(wg) > b.

Cy(wo) =~ Kka (10)

The same argument used to show that Z(w) is approximately normal shows that G
and H are approximately normal too. In fact,

E[H|Z(wu) = Z] = #‘wo)A(W(j)
A(wo) = —EZ(wo)H = —VyVyR(wo, w)|w=u,

so that, since b (and hence z) is large, the second term in the numerator of (10)
may be neglected. The expectation is then easily computed, resulting in

Lemma 1 (Smooth process clump size) Let the network activation functions
be twice continuously differentiable, and let b >> o(w). Then

Aw) [T (@)‘

ECy(w) ~ (27)%/? 73(w) ;

Substituting into (9) yields
A(w)

Pl 70 20 = 00 [ |20

where use of the asymptotic expansion &(z) ~ (2v/27)~!exp(—22/2) is justified
since (Yw)b > o(w) is necessary to have the individual P(Z(w) > b) low—let alone
the supremum. To go farther, we need information about the variance o?(w) of
(y — n(z; w))?. In general this must come from the problem at hand, but suppose
for example the process has a unique variance maximum 62 at w. Then, since
the level b is large, we can use Laplace’s method to approximate the d-dimensional
integral.

Y2,y N4
( ) e~V 1207 (W gy, (11)

o(w)

Laplace’s method finds asymptotic expansions for integrals
/w g(w) exp(—f(w)?/2) dw

when f(w) is C? with a unique positive minimum at wq in the interior of W C R¢,
and g(w) is positive and continuous. Suppose f(wp) >> 1 so that the exponential
factor i1s decreasing much faster than the slowly varying g. Expanding f to second
order about wy, substituting into the exponential, and performing the integral shows
that

| 9(u) exp(=£w)/2) dw = (2) 91 ) K29 (o) exp(~ n )2
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where K = VV f(w)|w,, the Hessian of f. See (Wong, 1989) for a proof. Applying
this to (11) and using the asymptotic expansion for ® in reverse yields

Theorem 1 Let the network activation functions be twice continuously differen-
tiable. Let the variance have a unique mazimum & at  in the interior of W and
the level b>> &. Then the PCH estimatle of exceedance probability is given by

A(@)[/2

P(:g‘?v Z(w) > b) ~ 1A(%) — T(@)[ 72 ®(b/7) (12)

where I'(@) = V, Vo R(w, v)|w=v=w- Furthermore, A — T is positive-definite at w;
it is —1/2 the Hessian of o?(w). The leading constant thus strictly ezceeds unity.
The above probability is just P(Z(w) > b) multiplied by a factor accounting for the
other networks in the supremum. Letting b = €1/n reveals
7% log(|A(@)|/|A(®) — T'(w

. = Z1o8(1A(E)/IAD) ~ T2} -
samples force P(sup,, |vr(w) — &(w)| > ¢€) below unity. If the variance maximum is
not unique but occurs over a d-dimensional set within W, the sample size estimate
becomes proportional to 72d/e2. With d playing the role of VC dimension v, this
is similar to Vapnik’s bound although we retain dependence on P and N

The above probability is determined by behavior near the maximum-variance point,
which for example in classification is where £(w) = 1/2. Such nets are uninterest-
ing as classifiers, and certainly it is undesirable for them to dominate the entire
probability. This problem is avoided by replacing Z(w) with Z(w)/o(w), which ad-
ditionally allows a finer resolution where £(w) nears zero. Indeed, for classification,
if n is such that with high probability

wup WT@ =E@ - r(w) @) 1)

wew o(w) wew VE(w)(1 - E(w))
then vr(w*) = 0 = £(w*) < (1 + €?)~! ~ € K e. Near vr(w*) = 0, condi-
tion (14)/ is much more powerful than the corresponding unnormalized one. Sample
size estimates using this setup give results having a functional form similar to (7).

4 ANOTHER MEANS OF COMPUTING CLUMP SIZE

Conditional on there being a clump center at w, the upper bound

Cy(w) < Dy(w) = fw 1(0,00)(Z(w') — b) du’ (15)

is evidently valid: the volume of the clump at w is no larger than the total volume of
all clumps. (The right hand side is indeed a function of w because we condition on
occurrence of a clump center at w.) The bound is an overestimate when the number
Ny of clumps exceeds one, but recall that we are in a regime where b (equivalently
n) is large enough so that P(Ny > 1)/P(Ny = 1) =~ [,,, \s(w)dw < 1. Thus error
in (15) due to this source is negligible. To compute its mean, we approximate

EDy(w) = fw P(Z(w') > blw a clump center) dw’












