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Abstract 

We estimate the number of training samples required to ensure that 
the performance of a neural network on its training data matches 
that obtained when fresh data is applied to the network. Existing 
estimates are higher by orders of magnitude than practice indicates. 
This work seeks to narrow the gap between theory and practice by 
transforming the problem into determining the distribution of the 
supremum of a random field in the space of weight vectors, which 
in turn is attacked by application of a recent technique called the 
Poisson clumping heuristic. 

1 INTRODUCTION AND KNOWN RESULTS 

We investigate the tradeofi"s among network complexity, training set size, and sta
tistical performance of feedforward neural networks so as to allow a reasoned choice 
of network architecture in the face of limited training data. Nets are functions 
7](x; w), parameterized by their weight vector w E W ~ Rd , which take as input 
points x E Rk. For classifiers, network output is restricted to {a, 1} while for fore
casting it may be any real number. The architecture of all nets under consideration 
is N, whose complexity may be gauged by its Vapnik-Chervonenkis (VC) dimension 
v, the size of the largest set of inputs the architecture can classify in any desired way 
('shatter'). Nets 7] EN are chosen on the basis of a training set T = {(Xi, YiHr=l. 
These n samples are i.i.d. according to an unknown probability law P. Performance 
of a network is measured by the mean-squared error 

E(w) E(7](x; w) - y)2 (1) 
= P(7](x;w);/; y) (for classifiers) (2) 
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and a good (perhaps not unique) net in the architecture is WO = argmiIlwew £(w). 
To select a net using the training set we employ the empirical error 

1 n 
VT(W) = - I)11(Xi; w) - Yi)2 (3) 

n i=l 

sustained by 11(·; w) on the training set T. A good choice for a classifier is then 
w· = argmiIlwew VT(W). In these terms, the issue raised in the first sentence ofthe 
section can be restated as, "How large must n be in order to ensure £(w·)-£(WO) $ 
i with high probability?" 

For purposes of analysis we can avoid dealing directly with the stochastically chosen 
network w· by noting 

£(w·) - £(WO) $ IVT(W·) - £(w·)1 + IVT(WO) - £(wo)1 $ 2 sup IVT(W) - £(w)1 
wEW 

A bound on the last quantity is also useful in its own right. 

The best-known result is in (Vapnik, 1982), introduced to the neural network com
munity by (Baum & Haussler, 1989): 

(2n)V ~ 
P( sup IVT(W) - £(w)1 ~ i) $ 6-,-e-n ( /2 (4) 

wEW v. 
This remarkable bound not only involves no unknown constant factors, but holds 
independent of the data distribution P . Analysis shows that sample sizes of about 

nc = (4V/i2) log 3/i (5) 
are enough to force the bound below unity, after which it drops exponentially to 
zero. Taking i = .1, v = 50 yields nc = 68000, which disagrees by orders of 
magnitude with the experience of practitioners who train such simple networks. 

More recently, Talagrand (1994) has obtained the bound 

( K2ni2)v ~ 
P( sup IVT(W) - £(w)1 ~ i) $ Kl e-2n ( , 

wew V 
(6) 

yielding a sufficient condition of order V/i2, but the values of Kl and K2 are inac
cessible so the result is of no practical use. 

Formulations with finer resolution near £(w) = 0 are used. Vapnik (1982) bounds 
P(suPwew IVT(W) - £(w)I/£(w)1/2 ~ i)-note £(w)1/2 ~ Var(vT(w»1/2 when 
£(w) ~ O-while Blumer et al. (1989) and Anthony and Biggs (1992) work with 
P(suPWEW IVT(W) - £(w)ll{o}(VT(W» ~ i). The latter obtain the sufficient condi
tion 

nc = (5.8v/i) log 12/i (7) 
for nets, if any, having VT( w) = o. If one is guaranteed to do reasonably well on 
the training set, a smaller order of dependence results. 

Results (Turmon & Fine, 1993) for perceptrons and P a Gaussian mixture imply 
that at least v/280i2 samples are needed to force £(w·) - £(WO) < 2i with high 
probability. (Here w· is the best linear discriminant with weights estimated from 
the data.) Combining with Talagrand's result, we see that the general (not assuming 
small VT(W» functional dependence is V/i2. 
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2 APPLYING THE POISSON CLUMPING HEURISTIC 

We adopt a new approach to the problem. For the moderately large values of n 
we anticipate, the central limit theorem informs us that Vn[lIT(W) - E(w)] has 
nearly the distribution of a zero-mean Gaussian random variable. It is therefore 
reasonable l to suppose that 

P( sup IlIT(W) - E(w)1 ~ f) ~ P( sup IZ(w)1 ~ fJ1i) ~ 2P( sup Z(w) ~ fVn) 
wEW wEW wEW 

where Z( w) is a Gaussian process with mean zero and covariance 

R(w, v) = EZ(w)Z(v) = Cov(y -1J(x; w»2, (y -1J(x; V»2) 
The problem about extrema of the original empirical process is equivalent to one 
about extrema of a corresponding Gaussian process. 

The Poisson clumping heuristic (PCR), introduced in the remarkable (Aldous, 
1989), provides a general tool for estimating such exceedance probabilities. Con
sider the excursions above level b(= fVn ~ 1) by a stochastic process Z(w). At 
left below, the set {w : Z( w) ~ b} is seen as a group of "clumps" scattered in weight 
space W. The PCR says that, provided Z has no long-range dependence and the 
level b is large, the centers of the clumps fall according to the points of a Poisson 
process on W, and the clump shapes are independent. The vertical arrows (below 
right) illustrate two clump centers (points of the Poisson process); the clumps are 
the bars centered about the arrows. 

w w 

In fact, with PheW) = P(Z(w) ~ b), Ch(W) the size of a clump located at w, and 
Ah (w) the rate of occurrence of clump centers, the fundamental equation is 

(8) 

The number of clumps in W is a Poisson random variable Nh with parameter 
1, Ah( w) dw. The probability of a clump is P(Nb > 0) = 1- exp( - fwAh( w) dW) =::: 
fw Ah(W) dw where the approximation holds because our goal is to operate in a 
regime where this probability is near zero. Letting ~(b) = P(N(0, 1) > b) and 
(T2(w) = R(w, w), we have PheW) = ~(b/(T(w». The fundamental equation becomes 

P( sup Z(w) ~ b) ~ r ~(b/(T(w» dw (9) 
wEW Jw ECh(W) 

It remains only to find the mean clump size ECh( w) in terms of the network archi
tecture and the statistics of (x, y). 

lSee ch. 7 of (Pollard, 1984) for treatment of some technical details in this limit. 
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3 POISSON CLUMPING FOR SMOOTH PROCESSES 

Assume Z(w) has two mean-square derivatives in w. (If the network activation 
functions have two derivatives in w, for example, Z( w) will have two almost sure 
derivatives.) Z then has a parabolic approximation about some Wo via its gradient 
G = 'VZ(w) and Hessian matrix H = 'V'VZ(w) at woo Provided Zo ~ b, that is 
that there is a clump at Wo, simple computations reveal 

(2(Zo - b) - cP'H- 1G)d/2 (10) 
Cb( wo) ~ Kd IHI I / 2 

where Kd is the volume of the unit ball in Rd and I· 1 is the determinant. The mean 
clump size is the expectation of this conditioned on Z(wo) ~ b. 

The same argument used to show that Z(w) is approximately normal shows that G 
and H are approximately normal too. In fact, 

z 
E[HIZ(wo) = z] 2( )A(wo) (F Wo 

A(wo) -EZ(wo)H = -'Vw 'VwR(wo, w)lw=wo 
so that, since b (and hence z) is large, the second term in the numerator of (10) 
may be neglected. The expectation is then easily computed, resulting in 

Lemma 1 (Smooth process clump size) Let the network activation functions 
be twice continuously differentiable, and let b » (F( w). Then 

ECb(W) ~ (21r)d/21 ~~~) 1-
112 

((F(:») d 

Substituting into (9) yields 

P( sup Z(w) ~ b) ~ (21r)-~ ( 1 A(w) 11/2 (_b_) d-~_b~/2q~(W) dw, (11) 
wEW iw (F2(w) (F(w) 

where use of the asymptotic expansion ~(z) ~ (zv'21r)-l exp( _Z2 /2) is justified 
since ('v'w)b » (F( w) is necessary to have the individual P( Z( w) ~ b) low-let alone 
the supremum. To go farther, we need information about the variance (F2 (w) of 
(y - 11( x; w»2. In general this must come from the problem at hand, but suppose 
for example the process has a unique variance maximum 0'2 at w. Then, since 
the level b is large, we can use Laplace's method to approximate the d-dimensional 
integral. 

Laplace's method finds asymptotic expansions for integrals 

fw g(w) exp( - f(w)2 /2) dw 

when few) is C2 with a unique positive minimum at Wo in the interior of W ~ Rd , 

and g( w) is positive and continuous. Suppose I( wo) » 1 so that the exponential 
factor is decreasing much faster than the slowly varying g. Expanding f to second 
order about Wo, substituting into the exponential, and performing the integral shows 
that 

iw g( w) exp( - f(w)2 /2) dw ~ (21r)d/2If( wo)KI- 1/ 2g( wo) exp( - f( wo)2 /2) 
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where K = V'V'f(w)lwo, the Hessian of f. See (Wong, 1989) for a proof. Applying 
this to (11) and using the asymptotic expansion for ~ in reverse yields 

Theorem 1 Let the network activation functions be twice continuously differen
tiable. Let the variance have a unique maximum u at w in the interior of Wand 
the level b ~ u. Then the peH estimate of exceedance probability is given by 

IA(w)1 1/ 2 _ 

P(:~fv Z(w) ~ b) ~ IA(w) _ r(w)1 1/ 2 ~(b/u) (12) 

where r(w) = V'wV'tlR(w,v)lw=tI=w. Furthermore, A- r is positive-definite at w; 
it is -1/2 the Hessian of cr2 (w). The leading constant thus strictly e:cceeds unity. 

The above probability is just P(Z(w) ~ b) multiplied by a factor accounting for the 
other networks in the supremum. Letting b = f...;n reveals 

u2 10g(IA(w)I/IA(w) - r(w)!) 
nc = 2 f. (13) 

samples force P(supw IlIT(W) - &(w)\ ~ {) below unity. If the variance maximum is 
not unique but occurs over a d-dimensional set within W, the sample size estimate 
becomes proportional to u2d/{2. With d playing the role of VC dimension v, this 
is similar to Vapnik's bound although we retain dependence on P and N. 
The above probability is determined by behavior near the maximum-variance point, 
which for example in classification is where &(w) = 1/2. Such nets are uninterest
ing as classifiers, and certainly it is undesirable for them to dominate the entire 
probability. This problem is avoided by replacing Z(w) with Z(w)/cr(w), which ad
ditionally allows a finer resolution where &(w) nears zero. Indeed, for classification, 
if n is such that with high probability 

IlIT(W) - &(w)1 IlIT(W) - &(w)1 (14) sup = sup < { , 
weW cr(w) wew J&(W)(I- &(w» 

then lIT(W·) = 0 ::} &(w·) < {2(1 + (2)-1 ~ {2 <t:: {. Near lIT(W·) = 0, condi
tion (14)/ is much more powerful than the corresponding unnormalized one. Sample 
size estimates using this setup give results having a functional form similar to (7). 

4 ANOTHER MEANS OF COMPUTING CLUMP SIZE 

Conditional on there being a clump center at w, the upper bound 

Cb(W) ~ Db(W) == iw l[o,oo)(Z(w') - b) dw' (15) 

is evidently valid: the volume of the clump at w is no larger than the total volume of 
all clumps. (The right hand side is indeed a function of w because we condition on 
occurrence of a clump center at w.) The bound is an overestimate when the number 
Nb of clumps exceeds one, but recall that we are in a regime where b (equivalently 
n) is large enough so that P( Nb > 1)/ P( Nb = 1) ~ fw ).b (w) dw <t:: 1. Thus error 
in (15) due to this source is negligible. To compute its mean, we approximate 

EDb(W) = iw P(Z(~f) ~ blw a clump center)dw' 
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(16) 

The point is that occurrence of a clump center at Wo is a smaller class of events than 
merely Z( wo) �~� b: the latter can arise from a clump center at a nearby w E W 
capturing woo Since Z(w) and Z(w') are jointly normal, abbreviate u = u(w), 
u' = u(w'), p = p(w,w') = R(w,w')/(uu'), and let 

(=(w,w') (UIU,)I;r;!; (17) 
1- p2 

(1- p)/(1 + p»)1/2 (constant variance case) (18) 

Evaluating the conditional probabilities of (16) presents no problem, and we obtain 

Lemma 2 (Clump size estimate) For b �~� u the mean clump size is 

ECb(W) �~� EDb(W) �~� /w cf>«blu)() dw' (19) 

Remark 1. This integral will be used in (9) to find 

( cf>(blu) 
�P�(�s�~�p�Z�(�w�)� > b) �~� Jw �f�w�~�«�b�l�u�)�(�)� dw,dw (20) 

Since b is large, the main contribution to the outer integral occurs for w near a 
variance maximum, i.e. for u' I u �~� 1. If the variance is constant then all w E W 
contribute. In either case ( is nonnegative. By lemma 1 we expect (19) to be, as 
a function of b, of the form (const ulb)P for, say, p = d. In particular, we do not 
anticipate the exponentially small clump sizes resulting if (Vw')( w, w') �~� M �~� O. 
Therefore ( should approach zero over some range of w', which happens only when 
p �~� 1, that is, for w' near w. The behavior of pew, w') for w' �~� w is the key to 
finding the clump size. 

Remark 2. There is a simple interpretation of the clump size; it represents the 
volume of w' E W for which Z(w') is highly correlated with Z(w). The exceedance 
probability is a sum of the point exceedance probabilities (the numerator of (20», 
each weighted according to how many other points are correlated with it. In effect, 
the space W is partitioned into regions that tend to "have exceedances together," 
with a large clump size ECb( w) indicating a large region. The overall probability 
can be viewed as a sum over all these regions of the corresponding point exceedance 
probability. This has a similarity to the Vapnik argument which lumps networks 
together according to their nV Iv! possible actions on n items in the training set. In 
this sense the mean clump size is a fundamental quantity expressing the ability of 
an architecture to generalize. 

5 EMPIRICAL ESTIMATES OF CLUMP SIZE 

The clump size estimate of lemma 2 is useful in its own right if one has information 
about the covariance of Z. Other known techniques of finding ECb( w) exploit 
special features of the process at hand (e.g. smoothness or similarity to other well
studied processes); the above expression is valid for any covariance structure. In 






