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Abstract 

Consider the problem of learning input/output mappings through 
exploration, e.g. learning the kinematics or dynamics of a robotic 
manipulator. If actions are expensive and computation is cheap, 
then we should explore by selecting a trajectory through the in­
put space which gives us the most amount of information in the 
fewest number of steps. I discuss how results from the field of opti­
mal experiment design may be used to guide such exploration, and 
demonstrate its use on a simple kinematics problem. 

1 Introduction 

Most machine learning research treats the learner as a passive receptacle for data 
to be processed. This approach ignores the fact that, in many situations, a learner 
is able, and sometimes required, to act on its environment to gather data. 

Learning control inherently involves being active; the controller must act in order 
to learn the result of its action. When training a neural network to control a 
robotic arm, one may explore by allowing the controller to "flail" for a length of 
time, moving the arm at random through coordinate space while it builds up data 
from which to build a model [Kuperstein, 1988]. This is not feasible, however, if 
actions are expensive and must be conserved. In these situations, we should choose 
a training trajectory that will get the most information out of a limited number of 
steps. Manually designing such trajectories is a slow process, and intuitively "good" 
trajectories often fail to sufficiently explore the state space [Armstrong, 1989]. In 
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this paper I discuss another alternative for exploration: automatic, incremental 
generation of training trajectories using results from "optimal experiment design." 

The study of optimal experiment design (OED) [Fedorov, 1972] is concerned with 
the design of experiments that are expected to minimize variances of a parameter­
ized model. Viewing actions as experiments that move us through the state space, 
we can use the techniques of OED to design training trajectories. 

The intent of optimal experiment design is usually to maximize confidence in a 
given model, minimize parameter variances for system identification, or minimize 
the model's output variance. Armstrong [1989] used a form of OED to identify link 
masses and inertial moments of a robot arm, and found that automatically gener­
ated training trajectories provided a significant improvement over human-designed 
trajectories. Automatic exploration strategies have been tried for neural networks 
(e.g. [Thrun and Moller, 1992]' [Moore, 1994]), but use of OED in the neural net­
work community has been limited. Plutowski and White [1993] successfully used it 
to filter a data set for maximally informative points, but its application to selecting 
new data has only been proposed [MacKay, 1992], not demonstrated. 

The following section gives a brief description of the relevant results from optimal 
experiment design. Section 3 describes how these results may be adapted to guide 
neural network exploration and Section 4 presents experimental results of imple­
menting this adaptation. Finally, Section 5 discusses implications of the results, 
and logical extensions of the current experiments. 

2 Optimal experiment design 

Optimal experiment design draws heavily on the technique of Maximum Likelihood 
Estimation (MLE) [Thisted, 1988]. Given a set of assumptions about the learner's 
architecture and sources of noise in the output, MLE provides a statistical basis for 
learning. Although the specific MLE techniques we use hold exactly only for linear 
models, making certain computational approximations allows them to be used with 
nonlinear systems such as neural networks. 

We begin with a training set of input-output pairs (Xi, Yi)i=l and a learner fw O· 
We define fw(x) to be the learner's output given input X and weight vector w. 
Under an assumption of additive Gaussian noise, the maximum likelihood estimate 
for the weight vector, W, is that which minimizes the sum squared error Esse = 
2:7=1(JW(Xi) - Yi)2. The estimate W gives us an estimate of the output at a novel 
input: if = fw(x) (see e.g. Figure 1a). 

MLE allows us to compute the variances of our weight and output estimates. Writ­
ing the output sensitivity asgw(x) = 8fw(x)/8w, the covariances of ware 

where the last approximation assumes local linearity of gw(x). (For brevity, the 
output sensitivity will be abbreviated to g( x) in the rest of the paper.) 
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Figure 1: a) A set of training examples for a classification problem, and the net­
work's best fit to the data. b) Maximum likelihood estimate of the network's output 
variance for the same problem. 

For a given reference input X r , the estimated output variance is 

var(xr ) = g(Xr? A- 1g(xr ). (1) 

Output variance corresponds to the model's estimate of the expected squared dis­
tance between its output fw(x) and the unknown "true" output y. Output variance 
then, corresponds to the model's estimate of its mean squared error (MSE) (see Fig­
ure 1 b). If the estimates are accurate then minimizing the output variance would 
correspond to minimizing the network's MSE. 

In optimal experiment design, we estimate how adding a new training example is 
expected to change the computed variances. Given a novel X n +1, we can use OED 
to predict the effect of adding Xn+1 and its as-yet-unknown Yn+1 to the training 
set. We make the assumption that 

-1 ( T)-1 An+1 ~ An + g(xn+dg(xn+d , 

which corresponds to assuming that our current model is already fairly good. Based 
on this assumption, the new parameter variances will be 

A~~1 = A~l - A~1g(xn+d(1 + g(Xn+1? A~1g(xn+d)g(xn+t)T A~1. 

Combined with Equation 1, this predicts that if we take a new example at X n +1, 
the change in output variance at reference input Xr will be 

~var(Xr ) (g(xrf A~lg(xn+l»2(1 + g(Xn+1)T A;;lg(xn+d) 

cov(xr, Xn+l)2(1 + var(xn+d) (2) 

To minimize the expected value of var(xr ), we should select Xn+l so as to maximize 
the right side of Equation 2. For other interesting OED measures, see MacKay 
[1992] . 
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3 Adapting OED to Exploration 

When building a world model, the learner is trying to build a mapping, e.g. from 
joint angles to cartesian coordinates (or from state-action pairs to next states). If 
it is allowed to select arbitrary joint angles (inputs) in successive time steps, then 
the problem is one of selecting the next "query" to make ([Cohn, 1990], [Baum and 
Lang, 1991]). In exploration, however, one's choices for a next input are constrained 
by the current input. We cannot instantaneously "teleport" to remote parts of the 
state space, but must choose among inputs that are available in the next time step. 

One approach to selecting a next input is to use selective sampling: evaluate a num­
ber of possible random inputs, choose the one with the highest expected gain. In a 
high-dimensional action space, this is inefficient. The approach followed here is that 
of gradient search, differentiating Equation 2 and hillclimbing on 8jj,var( x r )/ 8Xn +l. 

Note that Equation 2 gives the expected change in variance only at a single point 
X r , while we wish to minimize the average variance over the entire domain. Ex­
plicitly integrating over the domain is intractable, so we must make do with an 
approximation. MacKay [1992] proposed using a fixed set of reference points and 
measuring the expected change in variance over them. This produces spurious lo­
cal maxima at the reference points, and has the undesirable effect of arbitrarily 
quantizing the input space. Our approach is to iteratively draw reference points at 
random (either uniformly or according to a distribution of interest), and compute 
a stochastic approximation of jj, var. 

By climbing the stochastically approximated gradient, either to convergence or to 
the horizon of available next inputs, we will settle on an input/action with a (locally) 
optimal decrease in expected variance. 

4 Experimental Results 

In this section, I describe two sets of experiments. The first attempts to confirm 
that the gains predicted by optimal experiment design may actually be realized in 
practice, and the second studies the application of OED to a simple learning task. 

4.1 Expected versus actual gain 

It must be emphasized that the gains predicted by OED are expected gains. These 
expectations are based on the relatively strong assumptions of MLE, which may 
not strictly hold. In order for the expected gains to materialize, two "bridges" must 
be crossed. First, the expected decrease in model variance must be realized as an 
actual decrease in variance. Second, the actual decrease in model variance must 
translate into an actual decrease in model MSE. 

4.1.1 Expected decreases in variance --+ actual decreases in variance 

The translation from expected to actual changes in variance requires coordination 
between the exploration strategy and the learning algorithm: to predict how the 
variance of a weight will change with a new piece of data, the predictor must know 
how the weight itself (and its neighboring weights) will change. Using a black 
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Figure 2: a) Correlations between expected change in output variance and actual 
change output variance b) Correlations between actual change in output variance 
and change in mean squared error. Correlations are plotted for a network trained 
on 50 examples from the arm kinematics task. 

box routine like backpropagation to update the weights virtually guarantees that 
there will be some mismatch between expected and actual decreases in variance. 
Experiments indicate that, in spite of this, the correlation between predicted and 
actual changes in variance are relatively good (Figure 2a). 

4.1.2 Decreases in variance -- decreases in MSE 

A more troubling translation is the one from model variance to model correctness. 
Given the highly nonlinear nature of a neural network, local minima may leave us 
in situations where the model is very confident but entirely wrong. Due to high 
confidence, the learner may reject actions that would reduce its mean squared error 
and explore areas where the model is correct, but has low confidence. Evidence 
of this behavior is seen in the lower right corner of Figure 2b, where some actions 
which produce a large decrease in variance have little effect on the network's MSE. 
While this decreases the utility of OED, it is not crippling. We discuss one possible 
solution to this problem at the end of this paper. 

4.2 Learning kinematics 

We have used the the stochastic approximation of �~�v�a�r� to guide exploration on 
several simple tasks involving classification and regression. Below, I detail the 
experiments involving exploration of the kinematics of a simple two-dimensional, 
two-joint arm. The task was to learn a forward model 8 1 x 8 2 -- X X Y through 
exploration, which could then be used to build a controller following Jordan [1992]. 








