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Abstract 

We analyze how data with uncertain or missing input features can 
be incorporated into the training of a neural network. The gen­
eral solution requires a weighted integration over the unknown or 
uncertain input although computationally cheaper closed-form so­
lutions can be found for certain Gaussian Basis Function (GBF) 
networks. We also discuss cases in which heuristical solutions such 
as substituting the mean of an unknown input can be harmful. 

1 INTRODUCTION 

The ability to learn from data with uncertain and missing information is a funda­
mental requirement for learning systems. In the "real world" , features are missing 
due to unrecorded information or due to occlusion in vision, and measurements are 
affected by noise. In some cases the experimenter might want to assign varying 
degrees of reliability to the data. 

In regression, uncertainty is typically attributed to the dependent variable which is 
assumed to be disturbed by additive noise. But there is no reason to assume that 
input features might not be uncertain as well or even missing competely. 

In some cases, we can ignore the problem: instead of trying to model the rela­
tionship between the true input and the output we are satisfied with modeling the 
relationship between the uncertain input and the output. But there are at least two 
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reasons why we might want to explicitly deal with uncertain inputs. First, we might 
be interested in the underlying relationship between the true input and the output 
(e.g. the relationship has some physical meaning). Second, the problem might be 
non-stationary in the sense that for different samples different inputs are uncertain 
or missing or the levels of uncertainty vary. The naive strategy of training networks 
for all possible input combinations explodes in complexity and would require suffi­
cient data for all relevant cases. It makes more sense to define one underlying true 
model and relate all data to this one model. Ahmad and Tresp (1993) have shown 
how to include uncertainty during recall under the assumption that the network 
approximates the "true" underlying function. In this paper, we first show how in­
put uncertainty can be taken into account in the training of a feedforward neural 
network. Then we show that for networks of Gaussian basis functions it is possible 
to obtain closed-form solutions. We validate the solutions on two applications. 

2 THE CONSEQUENCES OF INPUT UNCERTAINTY 

Consider the task of predicting the dependent variable l y E ~ from the input 
vector x E ~M consisting of M random variables. We assume that the input 
data {(xklk = 1,2, ... , K} are selected independently and that P(x) is the joint 
probability distribution of x. Outputs {(yklk = 1,2, ... , K} are generated following 
the standard signal-plus-noise model 

yk = /(xk) + (k 

where {(klk = 1,2, ... , K} denote zero-mean ran'dom variables with probability den­
sity Pc(t:). The best predictor (in the mean-squared sense) of y given the input x 
is the regressor defined by E(ylx) = J y P(ylx) dx = f(x), where E denotes the 
expectation. Unbiased neural networks asymptotically (K -+ 00) converge to the 
regressor. 

To account for uncertainty in the independent variable we assume that we do not 
have access to x but can only obtain samples from another random vector z E ~M 
with 

zk = xk + Ok 
where {Ok Ik = 1,2, ... , K} denote independent random vectors containing M random 
variables with joint density P6(6).2 

A neural network trained with data {(zk, yk)lk = 1,2, ... , K} approximates 

E(ylz) = P~z) J y P(ylx) P(zlx) P(x) dydx = P~z) J /(x) P6(Z - x) P(x) dx. 

(1) 
Thus, in general E(ylz) # /(z) and we obtain a biased solution. Consider the 
case that the noise processes can be described by Gaussians Pc(() = G((j 0, O'Y) and 
P6(6) = G(Oj 0, 0') where, in our notation, G(Xj m, s) stands for 

11M (x· - m·)2 
G(x' m s) - exp[-- "" J J] 

, , - (211')M/2 n:;l Sj 2 ~ s] 

lOur notation does not distinguish between a random variable and its realization. 
2 At this point, we assume that P6 is independent of x. 
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Figure 1: The top half of the figure shows the probabilistic model. In an example, 
the bottom half shows E(Ylx) = f( x) ( continuous), the input noise distribution 
(dotted) and E(ylz ) (dashed). 

where m, s are vectors with the same dimensionality as x (here M). Let us take a 
closer look at four special cases. 

Certain input. If t7 = 0 (no input noise), the integral collapses and E(ylz) = fez). 

Uncertain input. If P(x) varies much more slowly than P(zlx), Equation 1 de­
scribed the convolution of f(x) with the noise process P6(Z - x). Typical noise 
processes will therefore blur or smooth the original mapping (Figures 1). It is 
somewhat surprising that the error on the input results in a (linear) convolution 
integral. In some special cases we might be able to recover f( x) from an network 
trained on deficient data by deconvolution, although one should use caution since 
deconvolution is very error sensitive. 

Unknown input. If t7j - 00 then the knowledge of Zj does not give us any infor­
mation about Xj and we can consider the jth input to be unknown. Our formalism 
therefore includes the case of missing inputs as special case. Equation 1 becomes 
an integral over the unknown dimensions weighted by P(x) (Figure 2). 

Linear approximation. If the approximation 

(2) 

is valid, the input noise can be transformed into output noise and E(ylz) = fez). 
This results can also be derived using Equation 1 if we consider that a convolution of 
a linear function with a symmetrical kernel does not change the function. This result 
tells us that if f(x) is approximately linear over the range where P6(6) has significant 
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Figure 2: Left: samples yk = f(xt, x~) are shown (no output noise). Right: with 
one input missing, P(yIX1) appears noisy. 

amplitude we can substitute the noisy input and the network will still approximate 
f(x). Similarly, the mean mean(xi) of an unknown variable can be substituted 
for an unknown input, if f(x) is linear and xi is independent of the remaining 
input variables. But in all those cases, one should be aware of the potentially large 
additional variance (Equation 2). 

3 MAXIMUM LIKELIHOOD LEARNING 

In this section, we demonstrate how deficient data can be incorporated into the 
training of feedforward networks. In a typical setting, we might have a number of 
complete data, a number of incomplete data and a number of data with uncertain 
features. Assuming independent samples and Gaussian noise, the log-likelihood I 
for a neural network NNw with weight vector W becomes 

K K 

1= 2:logP(zk,yk) = 2: log J G(yk jNNw(x),(1Y) G(zk jX ,(1k) P(x) dx. 
k=1 k=1 

Note that now, the input noise variance is allowed to depend on the sample k. The 
gradient of the log-likelihood with respect to an arbitrary weight Wi becomes3 

01 ~ 8IogP(zk, yk) 1 ~ 1 
8w. = L...J 8w' = ((1y)2 L...J P(zk yk) X 

l k=1 l k=1' 

J(yk - NNw (x)) 8N:~(x) G(yk;NNw(x),(1Y) G(zk;X,(1k) P(x) dx. (3) 

First, realize that for a certain sample k ((1k --+ 0): 8IogP(zk,yk)/8wi = 
(yk _ N Nw(zk))/((1Y)2 8N Nw(zk)/8wi which is the gradient used in normal back­
propagation. For uncertain data, this gradient is replaced by an averaged gra­
dient. The integral averages the gradient over possible true inputs x weighted 
by the probability of P(xlzk,yk) = P(zklx ) P(yklx ) P(x)/p(zk,yk). The term 

3This equation can also be obtained via the EM formalism. A similar equation was 
obtained by Buntine and Weigend (1991) for binary inputs. 
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P(yklx ) == G(ykjNNw(x),D''') is of special importance since it weights the gradi­
ent higher when the network prediction NNw (x) agrees with the target yk. This 
term is also the main reason why heuristics such as substituting the mean value 
for a missing variable can be harmful: if, at the substituted input, the difference 
between network prediction and target is large, the error is also large and the data 
point contributes significantly to the gradient although it is very unlikely that the 
substitutes value was the true input. 

In an implementation, the integral needs to be approximated by a finite sum (i. e. 
Monte-Carlo integration, finite-difference approximation etc.). In the experiment 
described in Figure 3, we had a 2-D input vector and the data set consisted of both 
complete data and data with one missing input. We used the following procedure 

1. Train the network using the complete data. Estimate (UIl )2. We used (U II )2 ~ 
(Ec /(K - H», where Ec is the training error after the network was trained with 
only the complete data, and H is the number of hidden units in the network. 

2. Estimate the input density P(x) using Gaussian mixtures (see next section). 

3. Include the incomplete training patterns in the training. 

4. For every incomplete training pattern 

• Let z~ be the certain input and let zt be the missing input, and z1c = (z~, zt) . 
• Approximate (assuming -1/2 < Xj < 1/2, the hat stands for estimate) 

J/2 
8 log P(z~, y1c) 1 1 1 ~ 

8Wi ::::: J (ulI)2 p(z~ y1c) . L..J «y1c - N Nw(z~, j / J» x 
, J=-J/2 

where 

4 GAUSSIAN BASIS FUNCTIONS 

The required integration in Equation 1 is computationally expensive and one would 
prefer closed form solutions. Closed form solutions can be found for networks which 
are based on Gaussian mixture densities.4 Let's assume that the joint density is 
given by 

N 

P(x) == L G(x; Ci, Si) P(Wi), 
i=l 

where Ci is the location of the center of the ith Gaussian and and Sij corresponds to 
the width of the ith Gaussian in the jth dimension and P(Wi) is the prior probability 
of Wi. Based on this model we can calculate the expected value of any unknown 

4Gaussian mixture learning with missing inputs is also addressed by Ghahramani and 
Jordan (1993). See also their contribution in this volume. 
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Figure 3: Regression. Left: We trained a feedforward neural network to predict the 
housing price from two inputs (average number of rooms, percent of lower status 
population (Tresp, Hollatz and Ahmad (1993». The training data set contained 
varying numbers of complete data points (c) and data points with one input missing 
(m). For training, we used the method outlined in Section 3. The test set consisted 
of 253 complete data. The graph (vertical axis: generalization error) shows that by 
including the incomplete patterns in the training, the performance is significantly 
improved. Right: We approximated the joint density by a mixture of Gaussians. 
The incomplete patterns were included by using the procedure outlined in Sec­
tion 4. The regression was calculated using Equation 4. As before, including the 
incomplete patterns in training improved the performance. Substituting the mean 
for the missing input (column on the right) on the other hand, resulted in worse 
performance than training of the network with only complete data. 
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Figure 4: Left: Classification performance as a function of the number of missing 
features on the task of 3D hand gesture recognition using a Gaussian mixtures 
classifier (Equation 5). The network had 10 input units, 20 basis functions and 7 
output units. The test set contained 3500 patterns. (For a complete description 
of the task see (Ahmad and Tresp, 1993).) Class-specific training with only 175 
complete patterns is compared to the performance when the network is trained with 
an additional 350, 1400, and 3325 incomplete patterns. Either 1 input (continuous) 
or an equal number of 1-3 (dashed) or 1-5 (dotted) inputs where missing. The 
figure shows clearly that adding incomplete patterns to a data set consisting of 
only complete patterns improves performance. Right: the plot shows performance 
when the network is trained only with 175 incomplete patterns. The performance 
is relatively stable as the number of missing features increases. 






