
Training Neural Networks with
Deficient Data

Volker Tresp
Siemens AG

Central Research
81730 Munchen

Germany
tresp@zfe.siemens.de

Subutai Ahmad
Interval Research Corporation

1801-C Page Mill Rd.
Palo Alto, CA 94304
ahmad@interval.com

Ralph N euneier
Siemens AG

Central Research
81730 Munchen

Germany
ralph@zfe.siemens.de

Abstract

We analyze how data with uncertain or missing input features can
be incorporated into the training of a neural network. The gen
eral solution requires a weighted integration over the unknown or
uncertain input although computationally cheaper closed-form so
lutions can be found for certain Gaussian Basis Function (GBF)
networks. We also discuss cases in which heuristical solutions such
as substituting the mean of an unknown input can be harmful.

1 INTRODUCTION

The ability to learn from data with uncertain and missing information is a funda
mental requirement for learning systems. In the "real world" , features are missing
due to unrecorded information or due to occlusion in vision, and measurements are
affected by noise. In some cases the experimenter might want to assign varying
degrees of reliability to the data.

In regression, uncertainty is typically attributed to the dependent variable which is
assumed to be disturbed by additive noise. But there is no reason to assume that
input features might not be uncertain as well or even missing competely.

In some cases, we can ignore the problem: instead of trying to model the rela
tionship between the true input and the output we are satisfied with modeling the
relationship between the uncertain input and the output. But there are at least two

128

Training Neural Networks with Deficient Data 129

reasons why we might want to explicitly deal with uncertain inputs. First, we might
be interested in the underlying relationship between the true input and the output
(e.g. the relationship has some physical meaning). Second, the problem might be
non-stationary in the sense that for different samples different inputs are uncertain
or missing or the levels of uncertainty vary. The naive strategy of training networks
for all possible input combinations explodes in complexity and would require suffi
cient data for all relevant cases. It makes more sense to define one underlying true
model and relate all data to this one model. Ahmad and Tresp (1993) have shown
how to include uncertainty during recall under the assumption that the network
approximates the "true" underlying function. In this paper, we first show how in
put uncertainty can be taken into account in the training of a feedforward neural
network. Then we show that for networks of Gaussian basis functions it is possible
to obtain closed-form solutions. We validate the solutions on two applications.

2 THE CONSEQUENCES OF INPUT UNCERTAINTY

Consider the task of predicting the dependent variable l y E ~ from the input
vector x E ~M consisting of M random variables. We assume that the input
data {(xklk = 1,2, ... , K} are selected independently and that P(x) is the joint
probability distribution of x. Outputs {(yklk = 1,2, ... , K} are generated following
the standard signal-plus-noise model

yk = /(xk) + (k

where {(klk = 1,2, ... , K} denote zero-mean ran'dom variables with probability den
sity Pc(t:). The best predictor (in the mean-squared sense) of y given the input x
is the regressor defined by E(ylx) = J y P(ylx) dx = f(x), where E denotes the
expectation. Unbiased neural networks asymptotically (K -+ 00) converge to the
regressor.

To account for uncertainty in the independent variable we assume that we do not
have access to x but can only obtain samples from another random vector z E ~M
with

zk = xk + Ok
where {Ok Ik = 1,2, ... , K} denote independent random vectors containing M random
variables with joint density P6(6).2

A neural network trained with data {(zk, yk)lk = 1,2, ... , K} approximates

E(ylz) = P~z) J y P(ylx) P(zlx) P(x) dydx = P~z) J /(x) P6(Z - x) P(x) dx.

(1)
Thus, in general E(ylz) # /(z) and we obtain a biased solution. Consider the
case that the noise processes can be described by Gaussians Pc(() = G((j 0, O'Y) and
P6(6) = G(Oj 0, 0') where, in our notation, G(Xj m, s) stands for

11M (x· - m·)2
G(x' m s) - exp[-- "" J J]

, , - (211')M/2 n:;l Sj 2 ~ s]

lOur notation does not distinguish between a random variable and its realization.
2 At this point, we assume that P6 is independent of x.

130 Tresp, Ahmad, and Neuneier

£

f(x) y

E(y!x) t
E(ylz)

I F \j
./ \ ~

Figure 1: The top half of the figure shows the probabilistic model. In an example,
the bottom half shows E(Ylx) = f(x) (continuous), the input noise distribution
(dotted) and E(ylz) (dashed).

where m, s are vectors with the same dimensionality as x (here M). Let us take a
closer look at four special cases.

Certain input. If t7 = 0 (no input noise), the integral collapses and E(ylz) = fez).

Uncertain input. If P(x) varies much more slowly than P(zlx), Equation 1 de
scribed the convolution of f(x) with the noise process P6(Z - x). Typical noise
processes will therefore blur or smooth the original mapping (Figures 1). It is
somewhat surprising that the error on the input results in a (linear) convolution
integral. In some special cases we might be able to recover f(x) from an network
trained on deficient data by deconvolution, although one should use caution since
deconvolution is very error sensitive.

Unknown input. If t7j - 00 then the knowledge of Zj does not give us any infor
mation about Xj and we can consider the jth input to be unknown. Our formalism
therefore includes the case of missing inputs as special case. Equation 1 becomes
an integral over the unknown dimensions weighted by P(x) (Figure 2).

Linear approximation. If the approximation

(2)

is valid, the input noise can be transformed into output noise and E(ylz) = fez).
This results can also be derived using Equation 1 if we consider that a convolution of
a linear function with a symmetrical kernel does not change the function. This result
tells us that if f(x) is approximately linear over the range where P6(6) has significant

Training Neural Networks with Deficient Data 131

'."r---~-~--'

'.2

...
Figure 2: Left: samples yk = f(xt, x~) are shown (no output noise). Right: with
one input missing, P(yIX1) appears noisy.

amplitude we can substitute the noisy input and the network will still approximate
f(x). Similarly, the mean mean(xi) of an unknown variable can be substituted
for an unknown input, if f(x) is linear and xi is independent of the remaining
input variables. But in all those cases, one should be aware of the potentially large
additional variance (Equation 2).

3 MAXIMUM LIKELIHOOD LEARNING

In this section, we demonstrate how deficient data can be incorporated into the
training of feedforward networks. In a typical setting, we might have a number of
complete data, a number of incomplete data and a number of data with uncertain
features. Assuming independent samples and Gaussian noise, the log-likelihood I
for a neural network NNw with weight vector W becomes

K K

1= 2:logP(zk,yk) = 2: log J G(yk jNNw(x),(1Y) G(zk jX ,(1k) P(x) dx.
k=1 k=1

Note that now, the input noise variance is allowed to depend on the sample k. The
gradient of the log-likelihood with respect to an arbitrary weight Wi becomes3

01 ~ 8IogP(zk, yk) 1 ~ 1
8w. = L...J 8w' = ((1y)2 L...J P(zk yk) X

l k=1 l k=1'

J(yk - NNw (x)) 8N:~(x) G(yk;NNw(x),(1Y) G(zk;X,(1k) P(x) dx. (3)

First, realize that for a certain sample k ((1k --+ 0): 8IogP(zk,yk)/8wi =
(yk _ N Nw(zk))/((1Y)2 8N Nw(zk)/8wi which is the gradient used in normal back
propagation. For uncertain data, this gradient is replaced by an averaged gra
dient. The integral averages the gradient over possible true inputs x weighted
by the probability of P(xlzk,yk) = P(zklx) P(yklx) P(x)/p(zk,yk). The term

3This equation can also be obtained via the EM formalism. A similar equation was
obtained by Buntine and Weigend (1991) for binary inputs.

132 Tresp, Ahmad, and Neuneier

P(yklx) == G(ykjNNw(x),D''') is of special importance since it weights the gradi
ent higher when the network prediction NNw (x) agrees with the target yk. This
term is also the main reason why heuristics such as substituting the mean value
for a missing variable can be harmful: if, at the substituted input, the difference
between network prediction and target is large, the error is also large and the data
point contributes significantly to the gradient although it is very unlikely that the
substitutes value was the true input.

In an implementation, the integral needs to be approximated by a finite sum (i. e.
Monte-Carlo integration, finite-difference approximation etc.). In the experiment
described in Figure 3, we had a 2-D input vector and the data set consisted of both
complete data and data with one missing input. We used the following procedure

1. Train the network using the complete data. Estimate (UIl)2. We used (U II)2 ~
(Ec /(K - H», where Ec is the training error after the network was trained with
only the complete data, and H is the number of hidden units in the network.

2. Estimate the input density P(x) using Gaussian mixtures (see next section).

3. Include the incomplete training patterns in the training.

4. For every incomplete training pattern

• Let z~ be the certain input and let zt be the missing input, and z1c = (z~, zt) .
• Approximate (assuming -1/2 < Xj < 1/2, the hat stands for estimate)

J/2
8 log P(z~, y1c) 1 1 1 ~

8Wi ::::: J (ulI)2 p(z~ y1c) . L..J «y1c - N Nw(z~, j / J» x
, J=-J/2

where

4 GAUSSIAN BASIS FUNCTIONS

The required integration in Equation 1 is computationally expensive and one would
prefer closed form solutions. Closed form solutions can be found for networks which
are based on Gaussian mixture densities.4 Let's assume that the joint density is
given by

N

P(x) == L G(x; Ci, Si) P(Wi),
i=l

where Ci is the location of the center of the ith Gaussian and and Sij corresponds to
the width of the ith Gaussian in the jth dimension and P(Wi) is the prior probability
of Wi. Based on this model we can calculate the expected value of any unknown

4Gaussian mixture learning with missing inputs is also addressed by Ghahramani and
Jordan (1993). See also their contribution in this volume.

0.1

28c 28c,
225m

125c 125c,
128m

Training Neural Networks with Deficient Data 133

0.1

28c 225m 28c, mean
225m subst

Figure 3: Regression. Left: We trained a feedforward neural network to predict the
housing price from two inputs (average number of rooms, percent of lower status
population (Tresp, Hollatz and Ahmad (1993». The training data set contained
varying numbers of complete data points (c) and data points with one input missing
(m). For training, we used the method outlined in Section 3. The test set consisted
of 253 complete data. The graph (vertical axis: generalization error) shows that by
including the incomplete patterns in the training, the performance is significantly
improved. Right: We approximated the joint density by a mixture of Gaussians.
The incomplete patterns were included by using the procedure outlined in Sec
tion 4. The regression was calculated using Equation 4. As before, including the
incomplete patterns in training improved the performance. Substituting the mean
for the missing input (column on the right) on the other hand, resulted in worse
performance than training of the network with only complete data.

0.86
i
1°·84 -§ 0.82

I 0.8

_. -.-

1000 2000 3000
of data with miss. feat.

0.74 �r�-�-�-�-�-�.�-�-�-�-�-�~�-�-�_�_�,�

1) io.n -c: i 0.7

60.68
tf!.

234
of missing features

5

Figure 4: Left: Classification performance as a function of the number of missing
features on the task of 3D hand gesture recognition using a Gaussian mixtures
classifier (Equation 5). The network had 10 input units, 20 basis functions and 7
output units. The test set contained 3500 patterns. (For a complete description
of the task see (Ahmad and Tresp, 1993).) Class-specific training with only 175
complete patterns is compared to the performance when the network is trained with
an additional 350, 1400, and 3325 incomplete patterns. Either 1 input (continuous)
or an equal number of 1-3 (dashed) or 1-5 (dotted) inputs where missing. The
figure shows clearly that adding incomplete patterns to a data set consisting of
only complete patterns improves performance. Right: the plot shows performance
when the network is trained only with 175 incomplete patterns. The performance
is relatively stable as the number of missing features increases.

