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Abstract 

An autoencoder network uses a set of recognition weights to convert an 
input vector into a code vector. It then uses a set of generative weights to 
convert the code vector into an approximate reconstruction of the input 
vector. We derive an objective function for training autoencoders based 
on the Minimum Description Length (MDL) principle. The aim is to 
minimize the information required to describe both the code vector and 
the reconstruction error. We show that this information is minimized 
by choosing code vectors stochastically according to a Boltzmann distri
bution, where the generative weights define the energy of each possible 
code vector given the input vector. Unfortunately, if the code vectors 
use distributed representations, it is exponentially expensive to compute 
this Boltzmann distribution because it involves all possible code vectors. 
We show that the recognition weights of an autoencoder can be used to 
compute an approximation to the Boltzmann distribution and that this ap
proximation gives an upper bound on the description length. Even when 
this bound is poor, it can be used as a Lyapunov function for learning 
both the generative and the recognition weights. We demonstrate that 
this approach can be used to learn factorial codes. 

1 INTRODUCTION 

Many of the unsupervised learning algorithms that have been suggested for neural networks 
can be seen as variations on two basic methods: Principal Components Analysis (PCA) 
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and Vector Quantization (VQ) which is also called clustering or competitive learning. 
Both of these algorithms can be implemented simply within the autoencoder framework 
(Baldi and Hornik, 1989; Hinton, 1989) which suggests that this framework may also 
include other algorithms that combine aspects of both. VQ is powerful because it uses 
a very non-linear mapping from the input vector to the code but weak because the code 
is a purely local representation. Conversely, PCA is weak because the mapping is linear 
but powerful because the code is a distributed, factorial representation. We describe a 
new objective function for training autoencoders that allows them to discover non-linear, 
factorial representations. 

2 THE MINIMUM DESCRIPfION LENGTH APPROACH 

One method of deriving a cost function for the activities of the hidden units in an autoencoder 
is to apply the Minimum Description Length (MDL) principle (Rissanen 1989). We imagine 
a communication game in which a sender observes an ensemble of training vectors and must 
then communicate these vectors to a receiver. For our purposes, the sender can wait until 
all of the input vectors have been observed before communicating any of them - an online 
method is not required. Assuming that the components of the vectors are finely quantized 
we can ask how many bits must be communicated to allow the receiver to reconstruct the 
input vectors perfectly. Perhaps the simplest method of communicating the vectors would 
be to send each component of each vector separately. Even this simple method requires 
some further specification before we can count the number of bits required. To send the 
value, Xi,c, of component i of input vector c we must encode this value as a bit string. If 
the sender and the receiver have already agreed on a probability distribution that assigns 
a probability p( x) to each possible quantized value, x, Shannon's coding theorem implies 
that x can be communicated at a cost that is bounded below by -log p( x) bits. Moreover, 
by using block coding techniques we can get arbitrarily close to this bound so we shall 
treat it as the true cost. For coding real values to within a quantization width of t it is 
often convenient to assume a Gaussian probability distribution with mean zero and standard 
deviation (1'. Provided that (1' is large compared with t, the cost of coding the value x is then 
-logt + 0.5 log 21r(1'2 + x 2 /2(1'2. 

This simple method of communicating the trainjng vectors is generally very wasteful. If 
the components of a vector are correlated it is generally more efficient to convert the input 
vector into some other representation before communicating it. The essence of the MDL 
principle is that the best model of the data is the one that minimizes the total number of 
bits required to communicate it, including the bits required to describe the coding scheme. 
For an autoencoder it is convenient to divide the total description length into three terms. 
An input vector is communicated to the receiver by sending the activities of the hidden 
units and the residual differences between the true input vector and the one that can be 
reconstructed from the hidden activities. There is a code cost for the hidden activities and a 
reconstruction cost for the residual differences. In addition there is a one-time model cost 
for communicating the weights that are required to convert the hidden activities into the 
output of the net. This model cost is generally very important within the MDL framework, 
but in this paper we will ignore it. In effect, we are considering the limit in which there is 
so much data that this limited model cost is negligible. 

PCA can be viewed as a special case of MDL in which we ignore the model cost and we limit 
the code cost by only using m hidden units. The question of how many bits are required 



Autoencoders, Minimum Description Length, and Helmhotz Free Energy 5 

to code each hidden unit activity is also ignored. Thus the only remaining term is the 
reconstruction cost. Assuming that the residual differences are encoded using a zero-mean 
Gaussian with the same predetermined variance for each component, the reconstruction 
cost is minimized by minimizing the squared differences. 

Similarly, VQ is a version of MDL in which we limit the code cost to at most log m bits by 
using only m winner-lake-all hidden units, we ignore the model cost, and we minimize the 
reconstruction cost. 

In standard VQ we assume that each input vector is converted into a specific code. Sur
prisingly, it is more efficient to choose the codes stochastically so that the very same input 
vector is sometimes communicated using one code and sometimes using another. This type 
of "stochastic VQ" is exactly equivalent to maximizing the log probability of the data under 
a mixture of Gaussians model. Each code of the VQ then corresponds to the mean of a 
Gaussian and the probability of picking the code is the posterior probability of the input 
vector under that Gaussian. Since this derivation of the mixture of Gaussians model is 
crucial to the new techniques described later, we shall describe it in some detail. 

2.1 The "bits-back" argument 

The description length of an input vector using a particular code is the sum of the code cost 
and reconstruction cost. We define this to be the energy of the code, for reasons that will 
become clear later. Given an input vector, we define the energy of a code to be the sum 
of the code cost and the reconstruction cost. If the prior probability of code i is 1f'i and its 
squared reconstruction error is d; the energy of the code is 

k d2 
Ei = -log 1f'i - k log t + "2 log 21f'0'2 + 20'2 (1) 

where k is the dimensionality of the input vector, 0'2 is the variance of the fixed Gaussian 
used for encoding the reconstruction errors and t is the quantization width. 

Now consider the following situation: We have fitted a VQ to some training data and, for a 
particular input vector, two of the codes are equally good in the sense that they have equal 
energies. In a standard VQ we would gain no advantage from the fact that there are two 
equally good codes. However, the fact that we have a choice of two codes should be worth 
something. It does not matter which code we use so if we are vague about the choice of 
code we should be able to save one bit when communicating the code. 

To make this argument precise consider the following communication game: The sender 
is already communicating a large number of random bits to the receiver, and we want to 
compute the additional cost of communicating some input vectors. For each input vector 
we have a number of alternative codes h1 ... hi ... hm and each code has an energy, Ei. In a 
standard VQ we would pick the code, j, with the lowest energy. But suppose we pick code 
i with a probability Pi that depends on Ei. Our expected cost then appears to be higher 
since we sometimes pick codes that do not have the minimum value of E. 

< Cost >= LPiEi 
i 

(2) 

where < ... > is used to denote an expected value. However, the sender can use her 
freedom of choice in stochastically picking codes to communicate some of the random 
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bits that need to be communicated anyway. It is easy to see how random bits can be used 
to stochastically choose a code, but it is less obvious how these bits can be recovered by 
the receiver, because he is only sent the chosen code and does not know the probability 
distribution from which it was picked. This distribution depends on the particular input 
vector that is being communicated. To recover the random bits, the receiver waits until all 
of the training vectors have been communicated losslessly and then runs exactly the same 
learning algorithm as the sender used. This allows the receiver to recover the recognition 
weights that are used to convert input vectors into codes, even though the only weights that 
are explicitly communicated from the sender to the receiver are the generative weights that 
convert codes into approximate reconstructions of the input. After learning the recognition 
weights, the receiver can reconstruct the probability distribution from which each code was 
stochastically picked because the input vector has already been communicated. Since he 
also knows which code was chosen, he can figure out the random bits that were used to do 
the picking. The expected number of random bits required to pick a code stochastically is 
simply the entropy of the probability distribution over codes 

H = - LPi logpi (3) 

So, allowing for the fact that these random bits have been successfully communicated, the 
true expected combined cost is 

(4) 

Note that F has exactly the form of Helmholtz free energy. It can be shown that the 
probability distribution which minimizes F is 

e-E ; 

Pi = Lj e-Ej (5) 

This is exactly the posterior probability distribution obtained when fitting a mixture of 
Gaussians to an input vector. 

The idea that a stochastic choice of codes is more efficient than just choosing the code with 
the smallest value of E is an example of the concept of stochastic complexity (Rissanen, 
1989) and can also be derived in other ways. The concept of stochastic complexity is 
unnecessarily complicated if we are only interested in fitting a mixture of Gaussians. 
Instead of thinking in terms of a stochastically chosen code plus a reconstruction error, 
we can simply use Shannon's coding theorem directly by assuming that we code the input 
vectors using the mixture of Gaussians probability distribution. However, when we start 
using more complicated coding schemes in which the input is reconstructed from the 
activities of several different hidden units, the formulation in terms of F is much easier 
to work with because it liberates us from the constraint that the probability distribution 
over codes must be the optimal one. There is generally no efficient way of computing the 
optimal distribution, but it is nevertheless possible to use F with a suboptimal distribution 
as a Lyapunov function for learning (Neal and Hinton, 1993). In MDL terms we are simply 
using a suboptimal coding scheme in order to make the computation tractable. 

One particular class of suboptimal distributions is very attractive for computational reasons. 
In a factorial distribution the probability distribution over md alternatives factors into d 
independent distributions over m alternatives. Because they can be represented compactly, 










