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Abstract 

Hybrid connectionistfHMM systems model time both using a Markov 
chain and through properties of a connectionist network. In this paper, 
we discuss the nature of the time dependence currently employed in our 
systems using recurrent networks (RNs) and feed-forward multi-layer 
perceptrons (MLPs). In particular, we introduce local recurrences into a 
MLP to produce an enhanced input representation. This is in the form 
of an adaptive gamma filter and incorporates an automatic approach for 
learning temporal dependencies. We have experimented on a speaker
independent phone recognition task using the TIMIT database. Results 
using the gamma filtered input representation have shown improvement 
over the baseline MLP system. Improvements have also been obtained 
through merging the baseline and gamma filter models. 

1 INTRODUCTION 

The most common approach to large-vocabulary, talker-independent speech recognition 
has been statistical modelling with hidden Markov models (HMMs). The HMM has an 
explicit model for time specified by the Markov chain parameters. This temporal model 
is governed by the grammar and phonology of the language being modelled. The acoustic 
signal is modelled as a random process of the Markov chain and adjoining local temporal 
information is assumed to be independent. This assumption is certainly not the case and a 
great deal of research has addressed the problem of modelling acoustic context. 

Standard HMM techniques for handling the context dependencies of the signal have ex-
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plicitly modelled all the n-tuples of acoustic segments (e.g., context-dependent triphone 
models). Typically, these systems employ a great number of parameters and, subsequently, 
require massive amounts of training data and/or care in smoothing of the parameters. Where 
the context of the model is greater than two segments, an additional problem is that it is 
very likely that contexts found in testing data are never observed in the training data. 

Recently, we have developed state-of-the-art continuous speech recognition systems using 
hybrid connectionistlHMM methods (Robinson, 1994; Renals et aI., 1994). These hybrid 
connectionistlHMM systems model context at two levels (although these levels are not 
necessarily at distinct scales). As in the traditional HMM, a Markov process is used to 
specify the duration and lexical constraints on the model. The connectionist framework 
provides a conditional likelihood estimate of the local (in time) acoustic waveform given 
the Markov process. Acoustic context is handled by either expanding the network input to 
include multiple, adjacent input frames, or using recurrent connections in the network to 
provide some memory of the previous acoustic inputs. 

2 DEPTH AND RESOLUTION 

Following Principe et al. (1993), we may characterise the time dependence displayed by a 
particular model in terms of depth and resolution. Loosely speaking, the depth tells us how 
far back in time a model is able to look l , and the resolution tells us how accurately the past 
to a given depth may be reconstructed. The baseline models that we currently use are very 
different in terms of these characteristics. 

Multi-layer Perceptron 

The feed-forward multi-layer perceptron (MLP) does not naturally model time, but simply 
maps an input to an output. Crude temporal dependence may be imparted into the system by 
using a delay-lined input (figure 1 a); an extension of this approach is the time-delay neural 
network (TDNN). The MLP may be interpreted as acting as a FIR filter. A delay-lined 
input representation may be characterised as having low depth (limited by the delay line 
length) and high resolution (no smoothing). 

Recurrent Network 

The recurrent network (RN) models time dependencies of the acoustic signal via a fully
connected, recurrent hidden layer (figure 1 b). The RN has a potentially infinite depth 
(although in practice this is limited by available training algorithms) and low resolution, 
and may be regarded as analogous to an IIR filter. A small amount of future context is 
available to the RN, through a four frame target delay. 

Experiments 

Experiments on the DARPA Resource Management (RM) database have indicated that 
the tradeoff between depth and resolution is important. In Robinson et al. (1993), we 
compared different acoustic front ends using a MLP and a RN. Both networks used 68 

1 In the language of section 3, the depth may be expressed as the mean duration, relative to the 
target, of the last kernel in a filter that is convolved with the input. 



Learning Temporal Dependencies in Connectionist Speech Recognition 1053 

p(q" I X~~), Vk = I , . .. . K 
u(t) y(t-4) 

x(t) 

Hidden Layer 
512 - 1,024 hidden units 

Xn_c . ,. xn_1 xn+1 . .. xn+c 

(a) Multi-layer Perceptron (b) Recurrent Network 

Figure 1: Connectionist architectures used for speech recognition. 

outputs (corresponding to phones); the MLP used 1000 hidden units and the RN used 
256 hidden units. Both architectures were trained using a training set containing 3990 
sentences spoken by 109 speakers. Two different resolutions were used in the front-end 
computation of mel-frequency cepstral coefficients (MFCCs): one with a 20ms Hamming 
window and a lOms frame step (referred to as 20110), the other with a 32ms Hamming 
window and a 16ms frame step (referred to as 32116). A priori, we expected the higher 
resolution frame rate (20/10) to produce a higher performance recogniser because rapid 
speech events would be more accurately modelled. While this was the case for the MLP, 
the RN showed better results using the lower resolution front end (32/16) (see table 1). For 
the higher resolution front-end, both models require a greater depth (in frames) for the same 
context (in milliseconds). In these experiments the network architectures were constant so 
increasing the resolution of the front end results in a loss of depth. 

Word Error Rate % 
Net Front End feb89 oct89 feb91 sep92 

RN 20/10 6.1 7.6 7.4 12.1 
RN 32116 5.9 6.3 6.1 11.5 

MLP 20/10 5.7 7.1 7.6 12.0 
MLP 32/16 6.6 7.8 8.5 15.0 

Table 1: Comparison of acoustic front ends using a RN and a MLP for continuous speech 
recognition on the RM task, using a wordpair grammar of perplexity 60. The four test sets 
(feb89, oct89, feb91 and sep92, labelled according to their date of release by DARPA) each 
contain 300 sentences spoken by 10 new speakers. 

In the case of the MLP we were able to explicitly set the memory depth. Previous experi
ments had determined that a memory depth of 6 frames (together with a target delayed by 3 
frames) was adequate for problems relating to this database. In the case of the RN, memory 
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(a) Gamma Filtered Input (b) Gamma Filter + Future Context 

Figure 2: Gamma memory applied to the network input. The simple gamma memory in (a) 
does not incorporate any information about the future, unless the target is delayed. In (b) 
there is an explicit delay line to incorporate some future context. 

depth is not determined directly, but results from the interaction between the network archi
tecture (i.e., number of state units) and the training process (in this case, back-propagation 
through time). We hypothesise that the RN failed to make use of the higher resolution front 
end because it did not adapt to the required depth. 

3 GAMMA MEMORY STRUCTURE 

The tradeoff between depth and resolution has led us to investigate other network archi
tectures. The gamma filter, introduced by de Vries and Principe (1992) and Principe et al. 
(1993), is a memory structure designed to automatically determine the appropriate depth 
and resolution (figure 2). This locally recurrent architecture enables lowpass and bandpass 
filters to be learned from data (using back-propagation through time or real-time recurrent 
learning) with only a few additional parameters. 

We may regard the gamma memory as a generalisation of a delay line (Mozer, 1993) in 
which the kth tap at time t is obtained by convolving the input time series with a kernel 
function, g~(t), and where 11 parametrises the Kth order gamma filter, 

gg(t) = 8(t) 

l<k<K. 

This family of kernels is attractive, since it may be computed incrementally by 

dXk(t) 
---;tt = -l1xk(t) + I1Xk-l (t) . 

This is in contrast to some other kernels that have been proposed (e.g., Gaussian kernels 
proposed by Bodenhausen and Waibel (1991) in which the convolutions must be performed 
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explicitly). In the discrete time case the filter becomes: 

Xk(t) = (l - Il)Xk(t - 1) + IlXk-l(t - 1) 

This recursive filter is guaranteed to be stable when 0 < J1 < 2. 

In the experiments reported below we have replaced the input delay line of a MLP with a 
gamma memory structure, using one gamma filter for each input feature. This structure is 
referred to as a "focused gamma net" by de Vries and Principe (1992). 

Owing to the effects of anticipatory coarticulation, information about the future is as 
important as past context in speech recognition. A simple gamma filtered input (figure 2a) 
does not include any future context. There are various ways in which this may be remedied; 

• Use the same architecture, but delay the target (similar to figure Ib); 

• Explicitly specify future context by adding a delay line from the future (figure 2b); 

• Use two gamma filters per feature: one forward, one backward in time. 

A drawback of the first approach is that the central frame corresponding to the delayed target 
will have been smoothed by the action of the gamma filter. The third approach necessitates 
two passes when either training or running the network. 

4 SPEECH RECOGNITION EXPERIMENTS 

We have performed experiments using the standard TIMIT speech database. This database 
is divided into 462 training speakers and 168 test speakers. Each speaker utters eight 
sentences that are used in these experiments, giving a training set of 3696 sentences and a 
test set of 1344 sentences. We have used this database for a continuous phone recognition 
task: labelling each sentence using a sequence of symbols, drawn from the standard 61 
element phone set. 

The acoustic data was preprocessed using a 12th order perceptual linear prediction (PLP) 
analysis to produce an energy coefficient plus 12 PLP cepstral coefficients for each frame 
of data. A 20ms Hamming window was used with a lOms frame step. The temporal 
derivatives of each of these features was also estimated (using a linear regression over ± 3 
adjacent frames) giving a total of 26 features per frame. 

The networks we employed (table 2) were MLPs, with 1000 hidden units, 61 output 
units (one per phone) and a variety of input representations. The Markov process used 
single state phone models, a bigram phone grammar, and a Viterbi decoder was used for 
recognition. The feed-forward weights in each network were initialised with identical sets 
of small random values. The gamma filter coefficients were initialised to 1.0 (equivalent 
to a delay line). The feed-forward weights were trained using back-propagation and the 
gamma filter coefficients were trained in a forward in time back-propagation procedure 
equivalent to real-time recurrent learning. An important detail is that the gradient step size 
was substantially lower (by a factor of 10) for the gamma filter parameters compared with 
the feed-forward weights. This was necessary to prevent the gamma filter parameters from 
becoming unstable. 

The baseline system using a delay line (Base) corresponds to figure 1 a, with ± 3 frames of 
context. The basic four-tap gamma filter G4 is illustrated in figure 2a (but using 1 fewer 








