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Abstract

Solvable models of nonlinear learning machines are proposed, and
learning in artificial neural networks is studied based on the theory
of ordinary differential equations. A learning algorithm is con-
structed, by which the optimal parameter can be found without
any recursive procedure. The solvable models enable us to analyze
the reason why experimental results by the error backpropagation
often contradict the statistical learning theory.

1 INTRODUCTION

Recent studies have shown that learning in artificial neural networks can be under-
stood as statistical parametric estimation using the maximum likelihood method
[1], and that their generalization abilities can be estimated using the statistical
asymptotic theory [2]. However, as is often reported, even when the number of
parameters is too large, the error for the testing sample is not so large as the theory
predicts. The reason for such inconsistency has not yet been clarified, because it is
difficult for the artificial neural network to find the global optimal parameter.

On the other hand, in order to analyze the nonlinear phenomena, exactly solvable
models have been playing a central role in mathematical physics, for example, the
K-dV equation, the Toda lattice, and some statistical models that satisfy the Yang-
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Baxter equation[3].

This paper proposes the first solvable models in the nonlinear learning problem. We
consider simple three-layered neural networks, and show that the parameters from
the inputs to the hidden units determine the function space that is characterized
by a differential equation. This fact means that optimization of the parameters
is equivalent to optimization of the differential equation. Based on this property,
we construct a learning algorithm by which the optimal parameters can be found
without any recursive procedure. Experimental result using the proposed algorithm
shows that the maximum likelihood estimator is not always obtained by the error
backpropagation, and that the conventional statistical learning theory leaves much
to be improved.

2 The Basic Structure of Solvable Models

Let us consider a function f.,(z) given by a simple neural network with 1 input
unit, H hidden units, and 1 output unit,

H
fc,w(x) = z c,-:,ow,.(-’!:), (1)
i=1
where both ¢ = {¢;} and w = {w;} are parameters to be optimized, ¢, () is the
output of the ¢-th hidden unit.

We assume that {¢;(2) = ¢, (2)} is a set of independent functions in CH-class.
The following theorem is the start point of this paper.

Theorem 1 The H-th order differential equation whose fundamental system of so-
lution is {pi(x)} and whose H-th order coefficient is 1 is uniquely given by

W 41(9, 91,92, -, 91 )
D z) = (-1 H ’ ) 3 ey =0, 9
( wg)( ) ( ) ‘yﬂ({pls@z,"'a(toh’) ( )
where Wy is the H-th order Wronskian,
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For proof, see [4]. From this theorem, we have the following corollary.

Corollary 1 Let g(z) be a CH-class function. Then the following conditions for
g(z) and w = {w;} are equivalent.

(1) There ezists a set c = {c;} such that g(z) = 21‘11 CiPw,; ().
(2) (Dwg)(z) = 0.
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Example 1 Let us consider a case, @, (2) = exp(w;z).

H
g(z) = z c; exp(w;x)
i=1

is equivalent to {D¥ 4 p, DH-' 4 p, DH-2 4 ... 4 py}g(x) = 0, where D = (d/dz)
and a set {p;} is determined from {w;} by the relation,

H
H +plz"["‘l +pgz”_2 + o+ py = H(z -w;) (VzeC).
i=1
Example 2 (RBF) A function g(x) is given by radial basis functions,
H
9(@) = 3 ciexp{—(z — wi)?},
i=1

if and only if e==" {DH + p; DH-1 4 p,DH-2 4 ... 4 py}(e*’ g(x)) = 0, where a set
{pi} is determined from {w;} by the relation,
H
H 2BV g2 4y py = H(z -2w;) (Vz e C).
i=1
Figure 1 shows a learning algorithm for the solvable models. When a target function
g(x) is given, let us consider the following function approximation problem.

H
9(2) = ) civwi(2) +€(2). (3)
i=1
Learning in the neural network is optimizing both {c;} and {w;} such that e(z) is
minimized for some error function. From the definition of D,,, eq. (3) is equivalent
to (Dwg)(2) = (Dywe)(x), where the term (D, g)(2) is independent of ¢;. Therefore,
if we adopt ||Dye|| as the error function to be minimized, {w;} is optimized by
minimizing || Dyg||, independently of {c;}, where ||f||*> = [ |f(z)|*dz. After ||D,gl|
is minimized, we have (D, g)(z) = 0, where w* is the optimized parameter. From
the corollary 1, there exists a set {c]} such that g(x) = 3 ¢fpu:(z), where {c}}
can be found using the ordinary least square method.

3 Solvable Models

For a general function ¢,,, the differential operator D,, does not always have such
a simple form as the above examples. In this section, we consider a linear operator
L such that the differential equation of Ly,, has a simple form.

Definition A neural network ) c;pw, () is called solvable if there exist functions
a, b, and a linear operator L such that

(Lopw, ) () = exp(a(w;)z + b(w;)).

The following theorem shows that the optimal parameter of the solvable models can
be found using the same algorithm as Figure 1.
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Figure 1: Structure of Solvable Models

-

Theorem 2 For a solvable model of a neural network, the following conditions are
equivalent when w; # w; (i # j).

(1) There exist both {c;} and {w;} such that g(z) = Zil Cipw; (@)
(2) There exzists {p;} such that {D¥ 4+ pyDH~ 4 p,DE-2 4 ... 4 pu}(Lg)(z) = 0.

(3) For arbitrary Q > 0, we define a sequence {yn} by yn = (Lg)(nQ). Then, there
extsts {q;} such that yn + ¢1Yn—1 + @2Yn-2+ -+ ¢gYn—n = 0.

Note that ||Dy Lg||* is a quadratic form for {p;}, which is easily minimized by the
least square method. 3 |yn+ @1¥n—1+ -+ uYn—n|? is also a quadratic form for

{a:}.

Theorem 3 The sequences {w;}, {pi}, and {¢;} in the theorem 2 have the following
relations.

H
2 pe2® 24 hpy = H(z - a(w;)) (Vz€C),
i=1
H
Ay 22 4qqn = H(z —exp(a(w;)Q)) (Vz € C).
=1

For proofs of the above theorems, see [5]. These theorems show that, if {p;} or
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{¢:} is optimized for a given function g(z), then {a(w;)} can be found as a set of
solutions of the algebraic equation.

Suppose that a target function g(z) is given. Then, from the above theorems,
the globally optimal parameter w* = {w]} can be found by minimizing || D Lgl||
independently of {c;}. Moreover, if the function a(w) is a one-to-one mapping, then
there exists w* uniquely without permutation of {w?}, if and only if the quadratic
form ||[{D¥ 4+ py DH=1 4 ... + pu}g|l® is not degenerate[d]. (Remark that, if it is
degenerate, we can use another neural network with the smaller number of hidden
units. )

Example 3 A neural network without scaling

Jo,e(x) = Z cio(z + b;), (4)

is solvable when (Fo)(z) # 0 (a.e.), where F denotes the Fourier transform. Define
a linear operator L by (Lg)(z) = (fg)(a:)/(.?—'a')(a:) then, it follows that

(Lfy.o)(@)= Zc. exp(— \/_—b x)s (5)

By the Theorem 2, the optimal {b;} can be obtained by using the differential or the
sequential equation.

Example 4 (MLP) A three-layered perceptron

= x + b;
s} = : 2 (i B
Too(2) ;c, tan™" ( s )i (6)
is solvable. Define a linear operator L by (Lg)(z) = = - (Fg)(z), then, it follows
that

(Lfy.c)(z) = ZC,exp —(ai + V=1 b))z + a(ai, b)) (x> 0). (7)

where a(a;, b;) is some functlon of a; and b;. Since the function tan™!(z) is mono-
tone increasing and bounded, we can expect that a neural network given by eq.
(6) has the same ability in the function approximation problem as the ordinary
three-layered perceptron using the sigmoid function, tanh(z).

Example 5 (Finite Wavelet Decomposition) A finite wavelet decomposition

H . %
frele) = Y cio(2E) ®)

is solvable when o(z) = (d/dz)"(1/(1+ %)) (n > 1). Define a linear operator L by
(Lg)(z) =2~ (Fg)(x) theu, it follows that

(Lfbc thexp (ﬂ +\/_b)$+ﬁ(a‘n )) (2:20). (9)
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where (a;, b;) is some function of a; and b;. Note that o(z) is an analyzing wavelet,
and that this example shows a method how to optimize parameters for the finite
wavelet decomposition.

4 Learning Algorithm

We construct a learning algorithm for solvable models, as shown in Figure 1.

<<Learning Algorithm>>
(0) A target function g(z) is given.
1) {Jm} is calculated by y,, = (Lg)(mQ)

(
(2) {¢:} is optimized by rmmnnzmg Em |Y¥m + Q1Ym—1 + @Ym—2+-+ qHym_le.
(3) {zi} is calculated by solving H oy 280 o224 gy = 0.

(4) {w;} is determined by a(w,) (1/Q)log z.

(

5) {ci} is optimized by minimizing 3_;(g(z;) — 2_; Cipw: (%))

Strictly speaking, g(z) should be given for arbitrary z. However, in the practical
application, if the number of training samples is sufficiently large so that (Lg)(z)
can be almost precisely approximated, this algorithm is available. In the third
procedure, to solve the algebraic equation, the DICA method is applied, for example.

5 Experimental Results and Discussion

5.1 The backpropagation and the proposed method

For experiments, we used a probability density function and a regression function
given by

Qi) = J%GXP(-LE%%E'))—)
Mz = oY 00141/3)+6 (36022/3)

where ¢ = 0.2. One hundred mput samples were set at the same interval in [0,1),
and output samples were taken from the above conditional distribution.

Table 1 shows the relation between the number of hidden units, training errors,
and regression errors. In the table, the training error in the backpropagation shows
the square error obtained after 100,000 training cycles. The training error in the
proposed method shows the square error by the above algorithm. And the regres-
sion error shows the square error between the true regression curve h(x) and the
estimated curve.

Figure 2 shows the true and estimated regression lines: (0) the true regression
line and sample points, (1) the estimated regression line with 2 hidden units, by
the BP (the error backpropagation) after 100,000 training cycles, (2) the estimated
regression line with 12 hidden units, by the BP after 100,000 training cycles, (3) the









