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Abstract 

Solvable models of nonlinear learning machines are proposed, and 
learning in artificial neural networks is studied based on the theory 
of ordinary differential equations. A learning algorithm is con­
structed, by which the optimal parameter can be found without 
any recursive procedure. The solvable models enable us to analyze 
the reason why experimental results by the error backpropagation 
often contradict the statistical learning theory. 

1 INTRODUCTION 

Recent studies have shown that learning in artificial neural networks can be under­
stood as statistical parametric estimation using t.he maximum likelihood method 
[1], and that their generalization abilities can be estimated using the statistical 
asymptotic theory [2]. However, as is often reported, even when the number of 
parameters is too large, the error for the test.ing sample is not so large as the theory 
predicts. The reason for such inconsistency has not yet been clarified, because it is 
difficult for the artificial neural network t.o find the global optimal parameter. 

On the other hand, in order to analyze the nonlinear phenomena, exactly solvable 
models have been playing a central role in mathematical physics, for example, the 
K-dV equation, the Toda lattice, and some statistical models that satisfy the Yang-
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Baxter equation[3]. 

This paper proposes the first solvable models in the nonlinear learning problem. We 
consider simple three-layered neural networks, and show that the parameters from 
the inputs to the hidden units determine the function space that is characterized 
by a differential equation. This fact means that optimization of the parameters 
is equivalent to optimization of the differential equation. Based on this property, 
we construct a learning algorithm by which the optimal parameters can be found 
without any recursive procedure. Experimental result using the proposed algorithm 
shows that the maximum likelihood estimator is not always obtained by the error 
backpropagation, and that the conventional statistical learning theory leaves much 
to be improved. 

2 The Basic Structure of Solvable Models 

Let us consider a function fc,w( x) given by a simple neural network with 1 input 
unit, H hidden units, and 1 output unit, 

H 

fc,w(x) = L CiIPw;{X), (I) 
i=1 

where both C = {Ci} and w = {Wi} are parameters to be optimized, IPw;{x) is the 
output of the i-th hidden unit. 

We assume that {IPi(X) = IPw, (x)} is a set of independent functions in C H -class. 
The following theorem is the start point of this paper. 

Theorem 1 The H -th order differential equation whose fundamental system of so­
lution is {IPi( x)} and whose H -th order coefficient is 1 is uniquely given by 

(Dwg)(x) = (_l)H H!H+l(g,1P1,1P2, .. ·,IPH) = 0, (2) 
lVH(IP1, IP2, .. ·,IPH) 

where ltV H is the H -th order Wronskian, 

(H-l) (H-l) 
'PI 'P2 

IPH 
( 1) 

IPH 
(2) 

'PH 

(H -1) 
IPH 

For proof, see [4]. From this theorem, we have the following corollary. 

Corollary 1 Let g(x) be a C H -class function. Then the following conditions for 
g(x) and w = {wd are equivalent. 

(1) There exists a set C = {cd such that g{x) = E~l CjIPw;(x). 

(2) (Dwg)(x) = O. 
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Example 1 Let us consider a case, !Pw;(x) = exp(WiX). 
H 

g(x) = L Ci exp(WiX) 
i=l 

is equivalent to {DH + P1D H- 1 + P2DH-2 + ... + PH }g(x) = 0, where D = (d/dx) 
and a set {Pi} is determined from {Wi} by the relation, 

H 

zH + PlzH- 1 + P2zH-2 + ... + PIl = II(z - Wi) ('Vz E C). 
i=l 

Example 2 (RBF) A function g(x) is given by radial basis functions, 
11 

g(x) = L Ci exp{ -(x - Wi)2}, 
i=l 

if and only if e- z2 {DIl + P1DIl-l + P2DIl-2 + ... + PIl }(eZ2 g(x)) = 0, where a set 
{Pi} is determined from {Wi} by the relation, 

11 

zll + Plz ll - 1 + P2zll-2 + ... + PII = II(z - 2Wi) ('Vz E C). 
i=l 

Figure 1 shows a learning algorithm for the solvable models. When a target function 
g( x) is given, let us consider the following function approximation problem. 

11 

g(x) = L Ci!Pw;(X) + E(X). (3) 
i=l 

Learning in the neural network is optimizing both {cd and {wd such that E( x) is 
minimized for some error function. From the definition of D w , eq. (3) is equivalent 
to (Dwg)(x) = (Dw€)(x), where the term (Dwg)(x) is independent of Cj. Therefore, 
if we adopt IIDwEIl as the error function to be minimized, {wd is optimized by 
minimizing IIDwgll, independently of {Cj}, where 111112 = J II(x)1 2dx. After IIDwgll 
is minimized, we have (Dw.g)(x) ~ 0, where w* is the optimized parameter. From 
the corollary 1, there exists a set {cn such that g(x) ~ L:ci!Pw~(x), where {en 
can be found using the ordinary least square method. 

3 Solvable Models 

For a general function !Pw, the differential operator Dw does not always have such 
a simple form as the above examples. In this section, we consider a linear operator 
L such that the differential equation of L!pw has a simple form. 

Definition A neural network L: Cj!PWi (x) is called solvable ifthere exist functions 
a, b, and a linear operator L such that 

(L!pwJ(x) = exp{a{wj)x + b(wi)). 

The following theorem shows that the optimal parameter of the solvable models can 
be found using the same algorithm as Figure 1. 
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H 
g(X) = L Ci ~ (x) +E(X) 

i=l i 

It is difficult to optimize wi 
independently ?f ci 

t 
There exits C i s.t. 

H 
g(x) = L Ci <P .(x) 

i=l wi 

I 

equiv. 
D g(x) = D E(X) 

w w 

II D wg II : minimited --W: optimized 

..... -.-----1 q,* g(x) 0 I 
eqmv. 

Least Square Method ~ c i : optimized 

H 
g(x) = L < <P .(x) 

i=l wi 

Figure 1: St.ructure of Solvable Models 

Theorem 2 For a solvable model of a neuml network, the following conditions are 
equivalent when Wi "# Wj (i "# j). 

(1) There exist both {cd and {wd such that g(x) = E:!:l Ci<t'w;(X). 

(2) There exists {Pi} such that {DH + P1D H- 1 + P2DH-2 + ... + PH }(Lg)(x) = O. 

(3) For arbitmry Q > 0, we define a sequence {Yn} by Yn = (Lg)(nQ). Then, there 
exists {qd such that Yn + qlYn-l + q2Yn-2 + ... + qHYn-H = o. 

Note that IIDwLgl12 is a quadratic form for {pd, which is easily minimized by the 
least square method. En IYn + qlYn-l + ... + QHYn_HI2 is also a quadratic form for 
{Qd· 

Theorem 3 The sequences { wd, {pd, and {qd in the theorem 2 have the following 
relations. 

H 
H+ H-l+ H-2+ + z PIZ P2 Z ... PH IT(z - a(wi)) ('Vz E C), 

i=l 

H 

zH + qlzH-l + q2zH-2 + ... + qH = IT(z - exp(a(Wi)Q)) ('Vz E C). 
i=l 

For proofs of the above theorems, see [5]. These theorems show that, if {Pi} or 
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{qd is optimized for a given function g( x), then {a( wd} can be found as a set of 
solutions of the algebraic equation. 

Suppose that a target function g( x) is given. Then, from the above theorems, 
the globally optimal parameter w* = {wi} can be found by minimizing IIDwLgll 
independently of {cd. Moreover, if the function a(w) is a one-to-one mapping, then 
there exists w* uniquely without permutation of {wi}, if and only if the quadratic 
form II{DH + P1 DH-1 + ... + PH }g1l2 is not degenerate[4]. (Remark that, if it is 
degenerate, we can use another neural network with the smaller number of hidden 
units.) 

Example 3 A neural network without scaling 
H 

fb,c(X) = L CiU(X + bi), 
i=1 

(4) 

is solvable when (F u)( x) I- 0 (a.e.), where F denotes the Fourier transform. Define 
a linear operator L by (Lg)(x) = (Fg)(x)/(Fu)(x), then, it follows that 

H 

(Lfb,c)(X) = L Ci exp( -vCi bi x). (5) 
i=l 

By the Theorem 2, the optimal {bd can be obtained by using the differential 01' the 
sequential equation. 

Example 4 (MLP) A three-layered perceptron 
H 
~ -1 X + bi 

fb,c(X) = L Ci tan ( a. ), 
i=1 z 

(6) 

is solvable. Define a linear operator L by (Lg)( x) = x . (F g)( x), then, it follows 
that 

H 

(Lfb,c)(X) = L Ci exp( -(a.i + yCi bdx + Q(ai, bd) (x ~ 0). (7) 
i=1 

where Q( ai, bi ) is some function of ai and bj. Since the function tan -1 (x) is mono­
tone increasing and bounded, we can expect that a neural network given by eq. 
(6) has the same ability in the function approximation problem as the ordinary 
three-layered perceptron using the sigmoid function, tanh{x). 

Example 5 (Finite Wavelet Decomposition) A finite wavelet decomposition 
H 

x + bj 
fb,c(X) = L Cju( ), (8) 

a.j 
i=l 

is solvable when u(x) = (d/dx)n(1/(l + x 2 » (n ~ 1). Define a lineal' operator L by 
(Lg)(x) = x- n . (Fg)(x) then, it follows that 

H 

(Lfb,c)(X) = L Ci exp( -(a.j + vCi bi)x + P(a.j, bi» (x ~ 0). (9) 
i=1 
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where f3(ai, bi) is some function of ai and bi. Note that O"(x) is an analyzing wavelet, 
and that this example shows a method how to optimize parameters for the finite 
wavelet decomposition. 

4 Learning Algorithm 

We construct a learning algorithm for solvable models, as shown in Figure 1-

< <Learning Algorithm> > 
(0) A target function g(x) is given. 
(1) {Ym} is calculated by Ym = (Lg)(mQ). 
(2) {qi} is optimized by minimizing L:m IYm + Q1Ym-l + Q2Ym-2 + ... + QHYm_HI2. 
(3) {Zi} is calculated by solving zH + q1zH-1 + Q2zH-2 + ... + QH = 0. 
(4) {wd is determined by a( wd = (l/Q) log Zi. 
(5) {cd is optimized by minimizing L:j(g(Xj) - L:i Cj<;?w;(Xj»2. 

Strictly speaking, g(x) should be given for arbitrary x. However, in the practical 
applicat.ion, if the number of training samples is sufficiently large so that (Lg)( x) 
can be almost precisely approximated, this algorithm is available. In the third 
procedure, to solve the algebraic equation, t.he DKA method is applied, for example. 

5 Experimental Results and Discussion 

5.1 The backpropagation and the proposed method 

For experiments, we used a probabilit.y density fUllction and a regression function 
given by 

Q(Ylx) 
1 ((y - h(X»2) 

exp -
J27r0"2 20"2 

h(x) 1 -1 X - 1/3 1 -1 X - 2/3 
-3" tan ( 0.04 ) + 6" tan ( 0.02 ) 

where 0" = 0.2. One hundred input samples were set at the same interval in [0,1), 
and output samples were taken from the above condit.ional distribution. 

Table 1 shows the relation between the number of hidden units, training errors, 
and regression errors. In the table, the t.raining errol' in the back propagation shows 
the square error obtained after 100,000 training cycles. The traiuing error in the 
proposed method shows the square errol' by the above algorithm. And the regres­
sion error shows the square error between the true regression curve h( x) and the 
estimated curve. 

Figure 2 shows the true and estimated regression lines: (0) the true regression 
line and sanlple points, (1) the estimated regression line with 2 hidden units, by 
the BP (the error backpropagation) after 100,000 training cycles, (2) the estimated 
regression line with 12 hidden units, by the BP after 100,000 training cycles, (3) the 
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Table 1: Training errors and regression errors 

Hidden Backpropagation Proposed Method 
Units Training Regression Training Regression 

2 4.1652 0.7698 4.0889 0.3301 
4 3.3464 0.4152 3.8755 0.2653 
6 3.3343 0.4227 3.5368 0.3730 
8 3.3267 0.4189 3.2237 0.4297 
10 3.3284 0.4260 3.2547 0.4413 
12 3.3170 0.4312 3.1988 0.5810 

estimated line with 2 hidden units by the proposed method, and (4) the estimated 
line with 12 hidden units by the proposed method. 

5.2 Discussion 

When the number of hidden units was small, the training errors by the BP were 
smaller, but the regression errors were larger. Vlhen the number of hidden units 
was taken to be larger, the training error by the BP didn't decrease so much as the 
proposed method, and the regression error didn't increase so mnch as the proposed 
method. 

By the error back propagation , parameters dichl 't reach the maximum likelihood 
estimator, or they fell into local minima. However, when t.he number of hidden 
units was large, the neural network wit.hout. t.he maximum likelihood estimator 
attained the bett.er generalization. It seems that paramet.ers in the local minima 
were closer to the true parameter than the maximum likelihood estimator. 

Theoretically, in the case of the layered neural networks, the maximum likelihood 
estimator may not be subject to asymptotically normal distribution because the 
Fisher informat.ion matrix may be degenerate. This can be one reason why the 
experimental results contradict the ordinary st.atistical theory. Adding such a prob­
lem, the above experimental results show that the local minimum causes a strange 
problem. In order to construct the more precise learning t.heory for the backprop­
agation neural network, and to choose the better parameter for generalization, we 
maybe need a method to analyze lea1'1ling and inference with a local minimum. 

6 Conclusion 

We have proposed solvable models of artificial neural networks, and studied their 
learning structure. It has been shown by the experimental results that the proposed 
method is useful in analysis of the neural network generalizat.ion problem. 




