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Abstract 

We study the complexity problem in artificial feedforward neural networks 
designed to approximate real valued functions of several real variables; i.e., 
we estimate the number of neurons in a network required to ensure a given 
degree of approximation to every function in a given function class. We 
indicate how to construct networks with the indicated number of neurons 
evaluating standard activation functions. Our general theorem shows that 
the smoother the activation function, the better the rate of approximation. 

1 INTRODUCTION 

The approximation capabilities of feedforward neural networks with a single hidden 
layer has been studied by many authors, e.g., [1, 2, 5]. In [10], we have shown that 
such a network using practically any nonlinear activation function can approximate 
any continuous function of any number of real variables on any compact set to any 
desired degree of accuracy. 

A central question in this theory is the following. If one needs to approximate 
a function from a known class of functions to a prescribed accuracy, how many 
neurons will be necessary to accomplish this approximation for all functions in the 
class? For example, Barron shows in [1] that it is possible to approximate any 
function satisfying certain conditions on its Fourier transform within an L2 error 
of O(1/n) using a feedforward neural network with one hidden layer comprising of 
n2 neurons, each with a sigmoidal activation function. On the contrary, if one is 
interested in a class of functions of s variables with a bounded gradient on [-1, I]S , 
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then in order to accomplish this order of approximation, it is necessary to use at 
least 0(11$) number of neurons, regardless of the activation function (cf. [3]). 

In this paper, our main interest is to consider the problem of approximating a 
function which is known only to have a certain number of smooth derivatives. We 
investigate the question of deciding which activation function will require how many 
neurons to achieve a given order of approximation for all such functions. We will 
describe a very general theorem and explain how to construct networks with various 
activation functions, such as the Gaussian and other radial basis functions advocated 
by Girosi and Poggio [13] as well as the classical squashing function and other 
sigmoidal functions. 

In the next section, we develop some notation and briefly review some known facts 
about approximation order with a sigmoidal type activation function. In Section 
3, we discuss our general theorem. This theorem is applied in Section 4 to yield 
the approximation bounds for various special functions which are commonly in use. 
In Section 5, we briefly describe certain dimension independent bounds similar to 
those due to Barron [1], but applicable with a general activation function. Section 
6 summarizes our results. 

2 SIGMOIDAL-TYPE ACTIVATION FUNCTIONS 

In this section, we develop some notation and review certain known facts. For the 
sake of concreteness, we consider only uniform approximation, but our results are 
valid also for other LP -norms with minor modifications, if any. Let s 2: 1 be the 
number of input variables. The class of all continuous functions on [-1, IP will be 
denoted by C$. The class of all 27r- periodic continuous functions will be denoted 
by C$*. The uniform norm in either case will be denoted by II . II. Let IIn,I,$,u 
denote the set of all possible outputs of feedforward neural networks consisting of 
n neurons arranged in I hidden layers and each neuron evaluating an activation 
function (j where the inputs to the network are from R$. It is customary to assume 
more a priori knowledge about the target function than the fact that it belongs 
to C$ or cn. For example, one may assume that it has continuous derivatives of 
order r 2: 1 and the sum of the norms of all the partial derivatives up to (and 
including) order r is bounded. Since we are interested mainly in the relative error 
in approximation, we may assume that the target function is normalized so that this 
sum of the norms is bounded above by 1. The class of all the functions satisfying 
this condition will be denoted by W: (or W:'" if the functions are periodic). In this 
paper, we are interested in the universal approximation of the classes W: (and their 
periodic versions). Specifically, we are interested in estimating the quantity 

(2.1) 

where 

(2.2) 

sup En,l,$,u(f) 
JEW: 

En,l,$,u(f) := p Anf III - PII· 
E n,l,s,1T 

The quantity En,l,s ,u(l) measures the theoretically possible best order of approxi­
mation of an individual function I by networks with 11 neurons. We are interested 
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in determining the order that such a network can possibly achieve for all functions 
in the given class. An equivalent dual formulation is to estimate 

(2.3) En,l,s,O'(W:) := min{m E Z : sup Em,l,s,O'(f) ~ lin}. 
fEW: 

This quantity measures the minimum number of neurons required to obtain accuracy 
of lin for all functions in the class W:. An analogous definition is assumed for W:* 
in place of W: . 
Let IH~ denote the class of all s-variable trigonometric polynomials of order at most 
n and for a continuous function f, 27r-periodic in each of its s variables, 

(2.4) E~(f):= min Ilf - PII · 
PEIH~ 

We observe that IH~ can be thought of as a subclass of all outputs of networks with 
a single hidden layer comprising of at most (2n + 1)" neurons, each evaluating the 
activation function sin X. It is then well known that 

(2.5) 

Here and in the sequel, c, Cl, ... will denote positive constants independent of the 
functions and the number of neurons involved, but generally dependent on the other 
parameters of the problem such as r, sand (j. Moreover, several constructions for 
the approximating trigonometric polynomials involved in (2.5) are also well known. 
In the dual formulation, (2.5) states that if (j(x) := sinx then 

(2.6) 

It can be proved [3] that any "reasonable" approximation process that aims to ap­
proximate all functions in W:'" up to an order of accuracy lin must necessarily 
depend upon at least O(ns/r) parameters. Thus, the activation function sin x pro­
vides optimal convergence rates for the class W:*. 

The problem of approximating an r times continuously differentiable function 
f R s --+ R on [-1, I]S can be reduced to that of approximating another 
function from the corresponding periodic class as follows. We take an infinitely 
many times differentiable function 1f; which is equal to 1 on [-2,2]S and 0 outside 
of [-7r, 7rp. The function f1f; can then be extended as a 27r-periodic function. This 
function is r times continuously differentiable and its derivatives can be bounded 
by the derivatives of f using the Leibnitz formula. A function that approximates 
this 27r-periodic function also approximates f on [-I,I]S with the same order of 
approximation. In contrast, it is not customary to choose the activation function 
to be periodic. 

In [10] we introduced the notion of a higher order sigmoidal function as follows. Let 
k > O. We say that a function (j : R --+ R is sigmoidal of order k if 

(2.7) lim (j( x) - 1 lim (j(x) - 0 
x-+oo xk -, x-+-oo xk - , 

and 

(2.8) xE R. 
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A sigmoidal function of order 0 is thus the customary bounded sigmoidal function. 

We proved in [10] that for any integer r ~ 1 and a sigmoidal function (j of order 
r - 1, we have 

(2.9) 
if s = 1, 
if s > 2. 

Subsequently, Mhaskar showed in [6] that if (j is a sigmoidal function of order k > 2 
and r ~ 1 then, with I = O(log r/ log k)), 

(2.10) 

Thus, an optimal network can be constructed using a sigmoidal function of higher 
order. During the course of the proofs in [10] and [6], we actually constructed the 
networks explicitly. The various features of these constructions from the connec­
tionist point of view are discussed in [7, 8, 9]. 

In this paper, we take a different viewpoint. We wish to determine which acti­
vation function leads to what approximation order. As remarked above, for the 
approximation of periodic functions, the periodic activation function sin x provides 
an optimal network. Therefore, we will investigate the degree of approximation by 
neural net.works first in terms of a general periodic activation function and then 
apply these results to the case when the activation function is not periodic. 

3 A GENERAL THEOREM 

In this section, we discuss the degree of approximation of periodic functions using 
periodic activation functions. It is our objective to include the case of radial basis 
functions as well as the usual "first. order" neural networks in our discussion. To 
encompass both of these cases, we discuss the following general formuation. Let 
s ~ d 2: 1 be integers and ¢J E Cd •. We will consider the approximation of functions 
in ca. by linear combinat.ions of quantities of the form ¢J(Ax + t) where A is a d x s 
matrix and t E Rd. (In general, both A and t are parameters ofthe network.) When 
d = s, A is the identity matrix and ¢J is a radial function, then a linear combination 
of n such quantities represents the output of a radial basis function network with n 
neurons. When d = 1 then we have the usual neural network with one hidden layer 
and periodic activation function ¢J. 

We define the Fourier coefficients of ¢J by the formula 

(3.1) , 1 1 . t ¢J(m) := (2 )d ¢J(t)e- zm. dt, 
7r [-lI',lI']d 

Let 

(3.2) 

and assume that there is a set J co Itaining d x s matrices with integer entries such 
that 

(3.3) 
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where AT denotes the transpose of A. If d = 1 and ¢(l) #- 0 (the neural network 
case) then we may choose S4> = {I} and J to be Z8 (considered as row vectors). 
If d = sand ¢J is a function with none of its Fourier coefficients equal to zero (the 
radial basis case) then we may choose S4> = zs and J = {Is x s}. For m E Z8, we 
let k m be the multi-integer with minimum magnitude such that m = ATkm for 
some A = Am E J. Our estimates will need the quantities 

(3.4) mn := min{I¢(km)1 : -2n::; m::; 2n} 

and 

(3.5) Nn := max{lkml : -2n::; m < 2n} 

where Ikml is the maximum absolute value of the components of km. In the neural 
network case, we have mn = 1¢(1)1 and Nn = 1. In the radial basis case, Nn = 2n. 

Our main theorem can be formulated as follows. 

THEOREM 3.1. Let s ~ d ~ 1, n ~ 1 and N ~ Nn be integers, f E C n , ¢J E C d*. 
It is possible to construct a network 

(3.6) 

such that 

(3.7) 

In (3.6), the sum contains at most O( n S Nd) terms, Aj E J, tj E R d, and dj are 
linear functionals of f, depending upon n, N, <p. 

The estimate (3.7) relates the degree of approximation of f by neural networks 
explicitly in terms of the degree of approximation of f and ¢J by trigonometric poly­
nomials. Well known estimates from approximation theory, such as (2.5), provide 
close connections between the smoothness of the functions involved and their degree 
of trigonometric polynomial approximation. In particular, (3.7) indicates that the 
smoother the function ¢J the better will be the degree of approximation. 

In [11], we have given explicit constructions of the operator Gn,N,4>. The formulas in 
[11] show that the network can be trained in a very simple manner, given the Fourier 
coefficients of the target function. The weights and thresholds (or the centers in the 
case of the radial basis networks) are determined universally for all functions being 
approximated . Only the coefficients at the output layer depend upon the function . 
Even these are given explicitly as linear combinations of the Fourier coefficients of 
the target function. The explicit formulas in [11] show that in the radial basis case, 
the operator Gn ,N,4> actually contains only O( n + N)S summands. 

4 APPLICATIONS 

In Section 3, we had assumed that the activation function ¢J is periodic. If the 
activation function (J is not periodic, but satisfies certain decay conditions near 
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00, it is still possible to construct a periodic function for which Theorem 3.1 can 
be applied. Suppose that there exists a function 1j; in the linear span of Au,J := 

{(T( Ax + t) A E J, t E R d}, which is integrable on R d and satisfies the condition 
that 

(4.1) for some T> d. 

Under this assumption, the function 

( 4.2) 1j;0 (x):= L 1j;(x - 27rk) 

kEZ d 

is a 27r-periodic function integrable on [-7r, 7r]s. We can then apply Theorem 3.1 
with 1j;0 instead of ¢. In Gn,N,tjJo, we next replace 1j;0 by a function obtained by 
judiciously truncating the infinite sum in (4.2). The error made in this replacement 
can be estimated using (4.1). Knowing the number of evaluations of (T in the 
expression for '1/) as a finite linear combination of elements of Au,J, we then have an 
estimate on the degree of approximation of I in terms of the number of evaluations of 
(T. This process was applied on a number of functions (T. The results are summarized 
in Table 1. 

5 DIMENSION INDEPENDENT BOUNDS 

In this section, we describe certain estimates on the L2 degree of approximation that 
are independent of the dimension of the input space. In this section, II· II denotes 
th(' L2 norm on [-1, I]S (respectively [-7r, 7r]S) and we approximate functions in the 
class S Fs defined by 

(5.1 ) SFtI := {I E C H : II/l1sF,s:= L li(m)l::; I}. 
mEZ' 

Analogous to the degree of approximation from IH~, we define the n-th degree of 
approximation of a function I E CS* by the formula 

(5.2) En s(f) := inf III - L i(m)eimOxlI 
, ACZ' ,IAI~n mEA 

where we require the norm involved to be the L2 norm. In (5.2), there is no need 
to assume that n is an integer. 

Let ¢ be a square integrable 27r-periodic function of one variable. We define the L2 
degree of approximation by networks with a single hidden layer by the formula 

(.5.3) E~~~)f) := PEj~~l"'~ III - PII 

where m is the largest integer not exceeding n. Our main theorem in this connection 
is the following 

THEOREM 5.1. Let s 2: 1 be an integer, IE SFs , ¢ E Li and J(1) f:. O. Then, for 
integers n, N 2: 1, 

(5.4) 
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Table 1: Order of magnitude of En,l,s,o-(W:) for different O"S 

---

Function 0' En Iso- Remarks 

Sigmoidal, order r - 1 n1/ r s=d=I,/=1 

Sigmoidal, order r - 1 n lJ / r+(s+2r)/r2 
s ~ 2, d = 1, I = 1 

xk, if x ~ 0, 0, if x < O. n IJ / r+ (2r+s )/2r k k ~ 2, s ~ 2, d = 1, I = 1 

(1 + e-x)-l nlJ/r(log n)2 s~2,d=I,/=1 

Sigmoidal, order k n lJ / r k ~ 2, s ~ 1, d = 1, 
I = o (log r/ log k)) 

exp( -lxl2 /2) n2s / r s=d>2/=1 - , 

Ixlk(log Ixl)6 n( IJ /r)(2+(3s+2r)/ k) 
S = d > 2, k > 0, k + seven, 
6 = 0 if s odd, 1 if s even, I = 1 

where {6n} is a sequence of positive numbers, 0 ::; 6n ::; 2, depending upon f such 
that 6n --- 0 as n --- 00. Moreover, the coefficients in the network that yields (5.1,) 
are bounded, independent of nand N. 

We may apply Theorem 5.1 in the same way as Theorem 3.1. For the squashing 
activation fUllction, this gives an order of approximation O(n-l/2) with a network 
consisting of n(lo~ n)2 neurons arranged in one hidden layer. With the truncated 
power function x + (cf. Table 1, entry 3) as the activation function, the same 
order of approximation is obtained with a network with a single hidden layer and 
O(n1+1/(2k») neurons. 

6 CONCLUSIONS. 

We have obtained estimates on the number of neurons necessary for a network with 
a single hidden layer to provide a gi ven accuracy of all functions under the only a 
priori assumption that the derivatives of the function up to a certain order should 
exist. We have proved a general theorem which enables us to estimate this number 
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in terms of the growth and smoothness of the activation function. We have explicitly 
constructed networks which provide the desired accuracy with the indicated number 
of neurons. 
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