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Abstract 

The overall goal is to reduce spacecraft weight. volume, and cost by on­
line adaptive non-linear control of flexible structural components. The 
objective of this effort is to develop an adaptive Neural Network (NN) 
controller for the Ball C-Side 1m x 3m antenna with embedded actuators 
and the RAMS sensor system. A traditional optimal controller for the 
major modes is provided perturbations by the NN to compensate for 
unknown residual modes. On-line training of recurrent and feed-forward 
NN architectures have achieved adaptive vibration control with 
unknown modal variations and noisy measurements. On-line training 
feedback to each actuator NN output is computed via Newton's method 
to reduce the difference between desired and achieved antenna positions. 

1 ADAPTIVE CONTROL BACKGROUND 
The two traditional approaches to adaptive control are 1) direct control (such as perfonned 
in direct model reference adaptive controllers) and 2) indirect control (such as performed by 
explicit self-tuning regulators). Direct control techniques (e.g. model-reference adaptive 
cootrul) provide good stability however are susceptible to noise. Whereas indirect control 
techn;'q~es (e.g. explicit self-tuning regulators) have low noise susceptibility and good 
convergence rate. However they require more control effort and have worse stability and 
are less roblistto mismodeling. NNs synergistically augment traditional adaptive control 
techniques by providing improved mismodeling robustness both adaptively on-line for 
time-varying dynamics as well as in a learned control mode at a slower rate. 

The NN control approaches which correspond to direct and indirect adaptive control are 
commonly known as inverse and forward modeling. respectively. More specifically, aNN 
which maps the plant state and its desired perfonnance to the control command is called 
an inverse model, a NN mapping both the current plant state and control to the next state 
and its performance is called the forward model. 

When given a desired performwce and the current state. the inverse model generates the 
control. see Figure 1. The actual perfonnance is observed and is used to train/update the 
inverse model. A significant problem occurs when the desired and achieved perfonnance 
differ greatly since the model near the desired slate is not changed. This condition is 
corrected by adding random noise to the control outputs so as to extend the state space 
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being explored. However, this correction has the effect of slowing the learning and 
reducing broadband stability. 
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Figure 1: Direct Adaptive Control Using Inverse Modeling Neural Network Controller 
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Figure 2: Dual (Indirect and Direct) Adaptive Control Using Forward Modeling Neural 
Network State Predictor To Aid Inverse Model Convergence 

For forward modeling the map from the current control and state to the resulting state and 
performance is learned, see Figure 2. For cases where the performance is evaluated at a 
future time (i.e. distal in time), a predictive critic [Barto and Sutton, 1989] NN model is 
learned. In both cases the Jacobian of this performance can be computed to iteratively 
generate the next control action. However, this differentiating of the critic NN for back­
propagation training of the controller network is very slow and in some cases steers the 
searching the wrong direction due to initial erroneous forward model estimates. As the NN 
adapts itself the performance flattens which results in the slow halting of learning at an 
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unacceptable solution. Adding noise to the controller's output [Jordan and Jacobs, 1990] 
breaks the redundancy but forces the critic to predict the effects of future noise. This 
problem has been solved by using a separately trained intermediate plant model to predict 
the next state from the prior state and control while having an independent predictor model 
generate the performance evaluation from the plant model predicted state [Werbos, 1990] 
and [Brody, 1991]. The result is a 50-100 fold learning speed improvement over 
reinforcement training of the forward model controller NN. 

However, this method still relies on a "good" forward model to incrementally train the 
inverse model. These incremental changes can still lead to undesirable solutions. For 
control systems which follow the stage 1,2 or 3 models given in [Narendra, 1991) the 
control can be analytically computed from a forward-only model. For the most general, 
non-linear (stage 4) systems, an alternative is the memory-based forward model [Moore, 
1992]. Using only a forward NN model, a direct hill-climbing or Newton's method search 
of candidate actions can be applied until a control decision is reached. The resulting state 
and its performance are used for on-line training of the forward model. Judicial random 
control actions are applied to improve behavior only where the forward model error is 
predicted to be large (e.g. via cross-validation). Also using robust regression, experiences 
can be deweighted according to their quality and their age. The high computational burden 
of these cross-validation techniques can be reduced by parallel on-line processing 
providing the "policy" parameters for fast on-line NN control. 

For control problems which are distal in time and space, a hybrid of these two forward­
modeling approaches can be used. Namely, a NN plant model is added which is trained 
off-line in real-time and updated as necessary at a slower rate than the on-line forward 
model which predicts performance based upon the current plant model. This slower rate 
trained forward-model NN supports learned control (e.g. via numerical inversion) whereas 
the on-line forward model provides the faster response adaptive control. Other NN control 
techniques such as using a Hopfield net to solve the optimal-control quadratic­
programming problem or the supervised training of ART II off-line with adaptive 
vigilance for on-line pole placement have been proposed. However, their on-line 
robustness appears limited due to their sensitivity to a priori parameter assumptions. 

A forward model NN which augments a traditional controller for unmodeled modes and 
unforeseen situations is presented in the following section. Performance results for both 
feed-faward and current learning versions are compared in Section 3. 

2 RESIDUAL FORWARD MODEL NEURAL NETWORK 
(RFM-NN) CONTROLLER 

A type of forward model NN which acts as a residual mode mter to support a reduced-order 
model (ROM) traditional optimal state controller has been evaluated. see Figure 3. The 
ROM determines the control based upon its model coordinate approximate representation 
of the structure. Model coordinates are obtained by a transformation using known primary 
vibration modes, [Young, 1990]. The transformation operator is a set of eigenvectors 
(mode shapes) generated by finite element modeling. The ROM controller is traditionally 
augmented by a residual-mode mter (RMF). Ball's RFM-NN Ball's RFM-NN replaces the 
RMF in order to better capture the mismodeled. unmodeled and changing modes. 

The objective of the RFM-NN is to provide ROM controller with ROM derivative state 
perturbations, so that the ROM controls the structure as desired by the user. The RFM­
NN is trained on-line using scored supervised feedback to generate these desired ROM 
state perturbations. The scored supervised training provides a score for each perturbation 
output based upon the measured position of the structure. The measured deviations, Y*(t), 
from the desired structure position are converted to errors in the estimated ROM state 
using the ROM. transformation. Specifically, the training score, S(t), for each ROM 
derivative state XN (t) is expressed in the following discrete equation: 

.. 
S(t) = BN Y * (t) - xN(t) 

where *N(t) = [AN + BNGN - KNCN]XN(t -1) + KN Y(t -1) 
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Figure 3: Residual Forward Model Neural Network Adaptive Controller Replaces 
Traditional Residual Mode Filter 

Newton's method is then applied to find lbe 0* (1) ROM state ~ations which zero 
the score. First, the score is smoothed, Set) = ~S(t -1) + (1- o)S(t) and the neural 
network output is smoothed similarly. Second, Newton's method computes the 
adjusbnents needed to zero the scores, 

~(O*N(t» = -S(t)(8iN(t) - 8iN(t -1» I [S(t) - Set -1)] 

= -EXN(t) (if either difference = 0) 

Third, the NN is trained, 8*T(t + 1) = ~(8iN(t» + 8iN(t) with the appropriate 
learning rate, a (e.g. approximation to inverse of largest eigenvalue of the Hessian 
weight matrix). 

3 RFM-NN ON-LINE LEARNING RESULTS 

Both feed-forward and recurrent RFM-NNs have been incorporated into an interactive 
simulation of Ball's Control-Structure Interaction Demonstration Experiment (C-SIDE) 
see Figure 4. This 1m x 3m lightweight antenna facesheet has 8 embedded actuators plus 
three auxiliary input actuators and uses 8 remote angular measurement sensors (RAMS) 
plus 4 displacement and 3 velocity auxiliary sensors. In order to evaluate the on-line 
performance of the RFM-NNs the ROM controller was given insufficient and partially 
incorrect modes. The ROM without the RFM-NN grew unstable (i.e. greater than 10 
millimeter C-SIDE displacements) in 13 seconds. The initial feed-forward RFM-NN used 
8 sensor and 6 ROM state feedback estimate inputs as well as 5 hidden units and 3 ROM 
velocity state perturbation outputs. This RFM-NN had random initial weights, logistic 
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activation functions. and back-propagation training using one sixth the learning rate for 
the output layers (e.g .. 06 and .01). Newton RFM-NN training search used a step size of 
one with smoothing factor of one tenth. 

Figure 4: 1m x 3m C-SIDE Antenna Facesheet With Embedded Actuators. 

This RFM-NN learned on-line to stabilized and reduce vibration to less than ±Imm 
within 20 seconds, see Figure 5. A five Newton force applied a few seconds later is 
compensated for within nine seconds, see Figure 6. This is accomplished with learning 
off as well as when on. To test the necessity of the RFM-NN the ROM was given the 
scored supervised training (Le. Newton's search estimates) directly instead of the RFM­
NN outputs. This caused immediate unstable behavior. To test the RFM-NN sensitivity 
to measurement accuracy a unifonn error of ±5% was added. Starting from the same 
random weight start the RFM-NN required 25 seconds to learn to stabilize the antenna, 
see Figure 7. The best stability was achieved when the product of the Newton and BPN 
steps was approximately .01. This feed-forward NN was compared to an Elman-type 
recurrent NN (i.e. hidden layer feedback to itself with one-step BP training). The recurrent 
RFM-NN on-line learning stability was much less sensitive to initial weights. The 
recurrent RFM-NN stabilized C-SIDE with up to 10% - 20% measurement noise versus 
5% - 10% limit for feed-forward RFM-NN. 

4 SUMMARY AND RECOMMENDATIONS 
Adaptive smart sbUctures promise to reduce spacecraft weight and dependence on extensive 
ground monitoring. A recurrent forward model NN is used as a residual mode fllter to 
augment a traditional reduced-order model (ROM) controller. It was more robust than the 
feed-forward NN and the traditional-only controller in the presence of unmodeled modes 
and noisy measurements. Further analyses and hardware implementations will be 
perfonned to better quantify this robustness including the sensitivity to the ROM 
controller mode fidelity, number of output modes. learning rates, measurement-to-state 
errors, and time quantization effects. 

To improve robustness to ROM mode changes a comparison to the dual forward/inverse 
NN control approach is recommended. The forward model will adjust the search used to 
train an inverse model which provides control augmentations to the ROM controller. This 
will enable control searches to occur both off-line faster than real-time using the forward 
model (Le. imagination) and on-line using direct search trials with varying noise levels. 
The forward model will adapt using quality experiences (e.g. via cross validation) which 
improves inverse models searches. The inverse model reliance on forward model will 
reduce until forward model prediction errors increase. Future challenges. include solving 








