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Abstract 

We are interested in the use of analog neural networks for recog
nizing visual objects. Objects are described by the set of parts 
they are composed of and their structural relationship. Struc
tural models are stored in a database and the recognition prob
lem reduces to matching data to models in a structurally consis
tent way. The object recognition problem is in general very diffi
cult in that it involves coupled problems of grouping, segmentation 
and matching. We limit the problem here to the simultaneous la
belling of the parts of a single object and the determination of 
analog parameters. This coupled problem reduces to a weighted 
match problem in which an optimizing neural network must min
imize E(M, p) = LO'i MO'i WO'i(p), where the {MO'd are binary 
match variables for data parts i to model parts a and {Wai(P)} 
are weights dependent on parameters p . In this work we show that 
by first solving for estimates p without solving for M ai , we may 
obtain good initial parameter estimates that yield better solutions 
for M and p. 
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Figure 1: Stored Model for a 3-Level Compositional Hierarchy (compare Figure 3) . 

1 Recognition via Stochastic Forward Models 

The Frameville object recognition system introduced by Mjolsness et al [5, 6, 1] 
makes use of a compositional hierarchy to represent stored models. The recognition 
problem is formulated as the minimization of an objective function. Mjolsness [3,4] 
has proposed to derive the objective function describing the recognition problem 
in a principled way from a stochastic model that describes the objects the system 
is designed to recognize (stochastic visual grammar). The description mirrors the 
data representation as a compositional hierarchy, at each stage the description of 
the object becomes more detailed as parts are added. 

The stochastic model assigns a probability distribution at each stage of that process. 
Thus at each level of the hierarchy a more detailed description of parts in terms of 
their subparts is given by specifying a probability distribution for the coordinates of 
the subparts. Explicitly specifying these distributions allows for finer control over 
individual part descriptions than the rather general parameter error terms used 
before [1, 8]. The goal is to derive a joint probability distribution for an instance 
of an object and its parts as it appears in the scene. This gives the probability of 
observing such an object prior to the arrival of the data. Given an observed image, 
the recognition problem can be stated as a Bayesian inference problem that the 
neural network solves. 

1.1 3-Level Stochastic Model 

For example, consider the model shown in Figure 1 and 3. The object and its parts 
are represented as line segments (sticks), the parameters were p = (x, y, I, ())T with 
x , y denoting position, I the length of a stick and () its orientation. The model 
considers only a rigid translation of an object in the image. 

Only one model is stored. From a central position p = (x, y, I, ()), itself chosen 
from a uniform density, the N{3 parts at the first level are placed. Their structural 
relationships is stored as coordinates u{3 in an object-centered coordinate frame, 
i.e. relative to p. While placing the parts, Gaussian distributed noise with mean 0 
and is added to the position coordinates to capture the notion of natural variation 
of the object's shape. The variance is coordinate specific, but we assume the same 
distribution for the x and y coordinates, O"'ix; O"'~, is the variance for the length 
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component and UI9 for the relative angle. In addition, here we assume for simplicity 
that all parts are independently distributed. Each of the parts {3 is composed of sub
parts. For simplicity of notation, we assume that each part {3 is composed from the 
same number of subparts Nm (note that the index 'Y in Figure 2 here corresponds 
to the double index {3m to keep track of which part {3 subpart {3m belongs to on the 
model side, i.e. the index (3m denotes the mth sub-part of part (3). The next step 
models the unordering of parts in the image via a permutation matrix M, chosen 
with probability P(M), by which their identity is lost. If this step were omitted, 
the recognition problem would reduce to the problem of estimating part parameters 
because the parts would already be labeled. 

From the grammar we compute the final joint probability distribution (all constant 
terms are collected in a constant C): 

P(M, {P,3m}, {PtJ}, p) = 

1.2 Frameville Architecture for Part Labelling within a single Object 

The stochastic forward model for the part labelling problem with only a single object 
present in the scene translates into a reduced Frameville architecture as depicted in 
Figure 2. The compositional hierarchy parallels the steps in the stochastic model 
as parts are added at each level. Match variables appear only at the lowest level, 
corresponding to the permutation step of the grammar. Parts in the image must 
be matched to model parts and parts found to belong to the stored object must be 
grouped together. 

The single match neuron Mai at the highest level can be set to unity since we assume 
we know the object's identity and only a single object is present. Similarly, all terms 
inaij from the first to the second level can be set to unity for the correct grouping 
since the grouping is known at this point from the forward model description. In 
addition, at the intermediate (second) level, we may set all M,3j = 1 for {3 = j 
and MtJj = 0 otherwise with no loss of generality. These mid-level frames may 
be matched ahead of time, but their parameters must be computed from data. 
Introducing a part permutation at the intermediate levels thus is redundant. Given 
this, an additional simplification ina grouping variables at the lowest (third) level 
is possible. Since parts are pre-matched at all but the lowest level, inaj k can be 
expressed in terms of the part match M"{k as inajk = M"{k1NA"{tJM,3j and explicitly 
representing inaj k as variables is not necessary. 

The input to the system are the {pk}, recognition involves finding the parameters 
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Figure 2: Frameville Architecture for the Stochastic Model. The 3-level grammar leads to a reduced 
"Frameville" style network architecture: a single model is stored on the model side and only one instance 
of the model is present in the input data. The ovals on the model side represent the object, its parts 
and subparts (compare Figure 1); the arcs INA represent their structural relationship . On the data side, 
the triangles represent parameter vectors (or frames) describing an instance of the object in the scene. 
At the lowest level the Pk represent the input data, parameters at higher levels in the hierarchy must be 
computed by the network (represented as bold triangles) . ina represents the grouping of parts on the 
data side (see text) . The horizontal lines represent assignments from frames on the data side to nodes 
on the model side. At the intermediate level, frames are prematched to the corresponding parts on the 
model side ; match variables are necessary only at the lowest level (represented as bold lines with circles). 

P and {Pi} as well as the labelling of parts M. Thus, from Bayes Theorem 

P( {pdIM, p, {Pi} )P(M, p, {Pi}) 
P({Pk} ) 

ex: P(M, p, {Pi}, {pd) (2) 

and recognition reduces to finding the most probable values for p, {Pi} and M 
given the data: 

arg max P(M, p, {Pi}, {pd) 
M,P,{Pi} 

(3) 

Solving the inference problem involves finding the MAP estimate and is is equivalent 
to minimizing the exponent in equation (1) with respect to M, P and {Pi}. 

2 Bootstrap: Coarse Scale Hints to Initialize the Network 

2.1 Compositional Hierarchy and Scale Space 

In some labelling approaches found in the vision literature, an object is first labelled 
at the coarse, low resolution, level and approximate parameters are found . In this 
top-down approach the information at the higher, more abstract, levels is used 
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Figure 3: Compositional Hierarchy vs . Scale Space Hierarchy_ A compositional hierarchy can represent a 
scale space hierarchy. At successive levels in the hierarchy, more and more detail is added to the object_ 

to select initial values for the parts at the next lower level of abstraction. The 
segmentation and labelling at this next lowest level is thus not done blindly; rather 
it is strongly influenced contextually by the results at the level above. 

In fact, in very general terms such a scheme was described by Marr and Nishihara [2]. 
They advocate in essence a hierarchical model base in which a shape is first matched 
to the highest levels, and defaults in terms of relative object-based parameters of 
parts at the next level are recalled from memory. These defaults then serve as initial 
values in an unspecified segmentation algorithm that derives part parameters; this 
step is repeated recursively until the lowest level is reached. 

Note that the highest level of abstractions correspond to the coarsest levels of spatial 
scale. There is nothing in the design of the model base that demands this, but invari
ably, elements at the top of a compositional hierarchy are of coarser scale since they 
must both include the many subparts below, and summarize this inclusion with 
relatively few parameters. Figure 3 illustrates the correspondence between these 
representations. In this sense, the compositional hierarchy as applied to shapes 
includes a notion of scale, but there is no "scale-space" operation of intentionally 
blurring data. The notion of Scale Space as utilized here thus differs from the 
application of the method to low-level computations in the visual domain where 
auxiliary coarse scale representations are computed explicitly. The object represen
tations in the Frameville system as described earlier combines both, bottom-up and 
top-down elements. If the top-down aspects of the scheme described by Marr and 
Nishihara [2] could be incorporated into the Frameville architecture, then our pre
vious simulation results [8] suggest that much better performance can be expected 
from the neural network. Two problems must be addressed: (1) How do we obtain, 
from the observed raw data alone, a coarse estimate of the slot parameters at the 
highest level and (2) given these crude estimates how do we utilize them to recall 
default settings for the segmentation one level below? 
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Figure 4: Bootstrap computation for a network from a 3- level grammar. Analog frame variables at the 
top and intermediate level are initialized from data by a bootstrap computation (bold lines indicate the 
flow of information) 

2.2 Initialization of Coarse Scale Parameters 

We propose to aid convergence by supplying initial values for the analog variables p 
and {Pi}; these must be computed from data without making use of the labelling. 
In general, it is not possible to solve for the analog parameters without knowledge 
of the correct permutation matrix M. However, for the purpose of obtaining an 
approximation f> one can derive a new objective function that does not depend on 
M and the parameters {Pi} by integrating over the {Pi} and summing over all 
possible permutation matrices M: 

P(p,{pk}) = L J d{pj}P(P,{Pi},{pd,M) 
{M}IM is a 
permutation 

(4) 

This formulation leads to an Elastic Net type network [9, 7]. However, this imple
mentation of a separate network for the bootstrap computations is expensive. 

Here we use simpler computation where the coarse scale parameters are estimated 
by computing sample averages, corresponding to finding the solution for the Elastic 
Net in the high temperature limit [7]. For the position x we find, after integrating 
over the {xi}, 

x 1 L M{3mkXk 

L{3m �1�/�(�O�"�~�x�O�"�~�m�x�)� 13m k �O�"�~�x�O�"�~�m�x� 

_ 1 L U{3x 

L{3 1/ �O�"�~�x� (3 �O�"�~�x� 
(5) 

and similarly for y. Since the assignment M{3m k of subparts k on the data side 
to subparts fJm on the model side is not known at this point, the first term in 
equations (5) cannot be evaluated. After approximating the actual variance with 






