
Networks with Learned Unit Response Functions

John Moody and Norman Yarvin
Yale Computer Science, 51 Prospect St.

P.O. Box 2158 Yale Station, New Haven, CT 06520-2158

Abstract

Feedforward networks composed of units which compute a sigmoidal func­
tion of a weighted sum of their inputs have been much investigated. We
tested the approximation and estimation capabilities of networks using
functions more complex than sigmoids. Three classes of functions were
tested: polynomials, rational functions, and flexible Fourier series. Un­
like sigmoids, these classes can fit non-monotonic functions. They were
compared on three problems: prediction of Boston housing prices, the
sunspot count, and robot arm inverse dynamics. The complex units at­
tained clearly superior performance on the robot arm problem, which is
a highly non-monotonic, pure approximation problem. On the noisy and
only mildly nonlinear Boston housing and sunspot problems, differences
among the complex units were revealed; polynomials did poorly, whereas
rationals and flexible Fourier series were comparable to sigmoids.

1 Introduction

A commonly studied neural architecture is the feedforward network in which each
unit of the network computes a nonlinear function g(x) of a weighted sum of its
inputs x = wtu. Generally this function is a sigmoid, such as g(x) = tanh x or
g(x) = 1/(1 + e(x-9»). To these we compared units of a substantially different
type: they also compute a nonlinear function of a weighted sum of their inputs,
but the unit response function is able to fit a much higher degree of nonlinearity
than can a sigmoid. The nonlinearities we considered were polynomials, rational
functions (ratios of polynomials), and flexible Fourier series (sums of cosines.) Our
comparisons were done in the context of two-layer networks consisting of one hidden
layer of complex units and an output layer of a single linear unit.

1048

Networks with Learned Unit Response Functions 1049

This network architecture is similar to that built by projection pursuit regression
(PPR) [1, 2], another technique for function approximation. The one difference is
that in PPR the nonlinear function of the units of the hidden layer is a nonparamet­
ric smooth. This nonparametric smooth has two disadvantages for neural modeling:
it has many parameters, and, as a smooth, it is easily trained only if desired output
values are available for that particular unit. The latter property makes the use of
smooths in multilayer networks inconvenient. If a parametrized function of a type
suitable for one-dimensional function approximation is used instead of the nonpara­
metric smooth, then these disadvantages do not apply. The functions we used are
all suitable for one-dimensional function approximation.

2 Representation

A few details of the representation of the unit response functions are worth noting.

Polynomials: Each polynomial unit computed the function

g(x) = alX + a2x2 + ... + anxn

with x = wT u being the weighted sum of the input. A zero'th order term was not
included in the above formula, since it would have been redundant among all the
units. The zero'th order term was dealt with separately and only stored in one
location.

Rationals: A rational function representation was adopted which could not have
zeros in the denominator. This representation used a sum of squares of polynomials,
as follows:

() ao + alx + ... + anxn
9 x -

- 1 + (b o + b1x)2 + (b 2x + b3x2)2 + (b4x + b5x 2 + b6X3 + b7x4)2 + .,.

This representation has the qualities that the denominator is never less than 1,
and that n parameters are used to produce a denominator of degree n. If the above
formula were continued the next terms in the denominator would be of degrees eight,
sixteen, and thirty-two. This powers-of-two sequence was used for the following
reason: of the 2(n - m) terms in the square of a polynomial p = am xm + '" + anxn ,
it is possible by manipulating am ... an to determine the n - m highest coefficients,
with the exception that the very highest coefficient must be non-negative. Thus
if we consider the coefficients of the polynomial that results from squaring and
adding together the terms of the denominator of the above formula, the highest
degree squared polynomial may be regarded as determining the highest half of the
coefficients, the second highest degree polynomial may be regarded as determining
the highest half of the rest of the coefficients, and so forth. This process cannot set
all the coefficients arbitrarily; some must be non-negative.

Flexible Fourier series: The flexible Fourier series units computed
n

g(x) = L: ai COS(bi X + Ci)
i=O

where the amplitudes ai, frequencies bi and phases Ci were unconstrained and could
assume any value.

1050 Moody and Yarvin

Sigmoids: We used the standard logistic function:

g(x) = 1/(1 + e(x-9))

3 Training Method

All the results presented here were trained with the Levenberg-Marquardt modifi­
cation of the Gauss-Newton nonlinear least squares algorithm. Stochastic gradient
descent was also tried at first, but on the problems where the two were compared,
Levenberg-Marquardt was much superior both in convergence time and in quality of
result. Levenberg-Marquardt required substantially fewer iterations than stochas­
tic gradient descent to converge. However, it needs O(p2) space and O(p2n) time
per iteration in a network with p parameters and n input examples, as compared
to O(p) space and O(pn) time per epoch for stochastic gradient descent. Further
details of the training method will be discussed in a longer paper.

With some data sets, a weight decay term was added to the energy function to be
optimized. The added term was of the form A L~=l w;. When weight decay was
used, a range of values of A was tried for every network trained.

Before training, all the data was normalized: each input variable was scaled so that
its range was (-1,1), then scaled so that the maximum sum of squares of input
variables for any example was 1. The output variable was scaled to have mean zero
and mean absolute value 1. This helped the training algorithm, especially in the
case of stochastic gradient descent.

4 Results

We present results of training our networks on three data sets: robot arm inverse
dynamics, Boston housing data, and sunspot count prediction. The Boston and
sunspot data sets are noisy, but have only mild nonlinearity. The robot arm inverse
dynamics data has no noise, but a high degree of nonlinearity. Noise-free problems
have low estimation error. Models for linear or mildly nonlinear problems typically
have low approximation error. The robot arm inverse dynamics problem is thus a
pure approximation problem, while performance on the noisy Boston and sunspots
problems is limited more by estimation error than by approximation error.

Figure la is a graph, as those used in PPR, of the unit response function of a one­
unit network trained on the Boston housing data. The x axis is a projection (a
weighted sum of inputs wT u) of the 13-dimensional input space onto 1 dimension,
using those weights chosen by the unit in training. The y axis is the fit to data. The
response function of the unit is a sum ofthree cosines. Figure Ib is the superposition
of five graphs of the five unit response functions used in a five-unit rational function
solution (RMS error less than 2%) of the robot arm inverse dynamics problem. The
domain for each curve lies along a different direction in the six-dimensional input
space. Four of the five fits along the projection directions are non-monotonic, and
thus can be fit only poorly by a sigmoid.

Two different error measures are used in the following. The first is the RMS error,
normalized so that error of 1 corresponds to no training. The second measure is the

~
.; 2
o

~
o
! ..
c

o

-2

-2.0

Figure 1: a

. . " . . ' . . '

Networks with Learned Unit Response Functions 1051

Robot arm fit to data

40

20

o

-zo

-40

1.0 -4

b

square of the normalized RMS error, otherwise known as the fraction of explained
varIance. We used whichever error measure was used in earlier work on that data
set.

4.1 Robot arm inverse dynamics

This problem is the determination of the torque necessary at the joints of a two­
joint robot arm required to achieve a given acceleration of each segment of the
arm, given each segment's velocity and position. There are six input variables to
the network, and two output variables. This problem was treated as two separate
estimation problems, one for the shoulder torque and one for the elbow torque. The
shoulder torque was a slightly more difficult problem, for almost all networks. The
1000 points in the training set covered the input space relatively thoroughly. This,
together with the fact that the problem had no noise, meant that there was little
difference between training set error and test set error.

Polynomial networks of limited degree are not universal approximators, and that
is quite evident on this data set; polynomial networks of low degree reached their
minimum error after a few units. Figure 2a shows this. If polynomial, cosine, ra­
tional, and sigmoid networks are compared as in Figure 2b, leaving out low degree
polynomials , the sigmoids have relatively high approximation error even for net­
works with 20 units. As shown in the following table, the complex units have more
parameters each, but still get better performance with fewer parameters total.

Type Units Parameters Error
degree 7 polynomial 5 65 .024
degree 6 rational 5 95 .027
2 term cosine 6 73 .020
sigmoid 10 81 .139
sigmoid 20 161 .119

Since the training set is noise-free, these errors represent pure approximation error .

1052 Moody and Yarvin

~.Iilte
+ootII1n.. 3 ler

0.8 0.8 Ooooln.. 4 tel'lNl
opoJynomleJ de, 7
XrationeJ do, 8

• ... "'0101

0.8 O.S

~
..
E • 0

0.4 0.4

0.2 0.2

0.0 L---,b-----+--~::::::::8~~§=t::::::!::::::1J
10 111 20

numbel' of WIIt11 number Dr WIIt11

Figure 2: a b

The superior performance of the complex units on this problem is probably due to
their ability to approximate non-monotonic functions.

4.2 Boston housing

The second data set is a benchmark for statistical algorithms: the prediction of
Boston housing prices from 13 factors [3]. This data set contains 506 exemplars and
is relatively simple; it can be approximated well with only a single unit. Networks
of between one and six units were trained on this problem. Figure 3a is a graph
of training set performance from networks trained on the entire data set; the error
measure used was the fraction of explained variance. From this graph it is apparent

0 .20

O. lfi

~ •
0.10

0.05

Figure 3: a

03 tenD coolh.
x.itmold

o polJDomll1 d., fi
+raUo,,"1 dec 2
02 term.....m.

1.0 0 3 term COllin.
x.tpnotd

0.5

b

Networks with Learned Unit Response Functions 1053

that training set performance does not vary greatly between different types of units,
though networks with more units do better.

On the test set there is a large difference. This is shown in Figure 3b. Each point
on the graph is the average performance of ten networks of that type. Each network
was trained using a different permutation of the data into test and training sets, the
test set being 1/3 of the examples and the training set 2/3. It can be seen that the
cosine nets perform the best, the sigmoid nets a close second, the rationals third,
and the polynomials worst (with the error increasing quite a bit with increasing
polynomial degree.)

It should be noted that the distribution of errors is far from a normal distribution,
and that the training set error gives little clue as to the test set error. The following
table of errors, for nine networks of four units using a degree 5 polynomial, is
somewhat typical:

Set
training
test

Error

0.091 I
0.395

Our speculation on the cause of these extremely high errors is that polynomial ap­
proximations do not extrapolate well; if the prediction of some data point results in
a polynomial being evaluated slightly outside the region on which the polynomial
was trained, the error may be extremely high. Rational functions where the nu­
merator and denominator have equal degree have less of a problem with this, since
asymptotically they are constant. However, over small intervals they can have the
extrapolation characteristics of polynomials. Cosines are bounded, and so, though
they may not extrapolate well if the function is not somewhat periodic, at least do
not reach large values like polynomials.

4.3 Sunspots

The third problem was the prediction of the average monthly sunspot count in a
given year from the values of the previous twelve years. We followed previous work
in using as our error measure the fraction of variance explained, and in using as
the training set the years 1700 through 1920 and as the test set the years 1921
through 1955. This was a relatively easy test set - every network of one unit which
we trained (whether sigmoid, polynomial, rational, or cosine) had, in each of ten
runs, a training set error between .147 and .153 and a test set error between .105
and .111. For comparison, the best test set error achieved by us or previous testers
was about .085. A similar set of runs was done as those for the Boston housing
data, but using at most four units; similar results were obtained. Figure 4a shows
training set error and Figure 4b shows test set error on this problem.

4.4 Weight Decay

The performance of almost all networks was improved by some amount of weight
decay. Figure 5 contains graphs of test set error for sigmoidal and polynomial units,

