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Abstract 

We describe in this paper a novel application of neural networks to system 
health monitoring of a large antenna for deep space communications. The 
paper outlines our approach to building a monitoring system using hybrid 
signal processing and neural network techniques, including autoregressive 
modelling, pattern recognition, and Hidden Markov models. We discuss 
several problems which are somewhat generic in applications of this kind 
- in particular we address the problem of detecting classes which were 
not present in the training data. Experimental results indicate that the 
proposed system is sufficiently reliable for practical implementation. 

1 Background: The Deep Space Network 

The Deep Space Network (DSN) (designed and operated by the Jet Propulsion Lab
oratory (JPL) for the National Aeronautics and Space Administration (NASA)) is 
unique in terms of providing end-to-end telecommunication capabilities between 
earth and various interplanetary spacecraft throughout the solar system. The 
ground component of the DSN consists of three ground station complexes located 
in California, Spain and Australia, giving full 24-hour coverage for deep space com
munications. Since spacecraft are always severely limited in terms of available 
transmitter power (for example, each of the Voyager spacecraft only use 20 watts 
to transmit signals back to earth), all subsystems of the end-to-end communica
tions link (radio telemetry, coding, receivers, amplifiers) tend to be pushed to the 
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absolute limits of performance. The large steerable ground antennas (70m and 34m 
dishes) represent critical potential single points of failure in the network. In partic
ular there is only a single 70m antenna at each complex because of the large cost 
and calibration effort involved in constructing and operating a steerable antenna 
of that size - the entire structure (including pedestal support) weighs over 8,000 
tons. 

The antenna pointing systems consist of azimuth and elevation axes drives which 
respond to computer-generated trajectory commands to steer the antenna in real
time. Pointing accuracy requirements for the antenna are such that there is little 
tolerance for component degradation. Achieving the necessary degree of positional 
accuracy is rendered difficult by various non-linearities in the gear and motor ele
ments and environmental disturbances such as gusts of wind affecting the antenna 
dish structure. Off-beam pointing can result in rapid fall-off in signal-to-noise ratios 
and consequent potential loss of irrecoverable scientific data from the spacecraft. 

The pointing systems are a complex mix of electro-mechanical and hydraulic com
ponents. A faulty component will manifest itself indirectly via a change in the char
acteristics of observed sensor readings in the pointing control loop. Because of the 
non-linearity and feedback present, direct causal relationships between fault condi
tions and observed symptoms can be difficult to establish - this makes manual fault 
diagnosis a slow and expensive process. In addition, if a pointing problem occurs 
while a spacecraft is being tracked, the antenna is often shut-down to prevent any 
potential damage to the structure, and the track is transferred to another antenna 
if possible. Hence, at present, diagnosis often occurs after the fact, where the orig
inal fault conditions may be difficult to replicate. An obvious strategy is to design 
an on-line automated monitoring system. Conventional control-theoretic models 
for fault detection are impractical due to the difficulties in constructing accurate 
models for such a non-linear system - an alternative is to learn the symptom-fault 
mapping directly from training data, the approach we follow here. 

2 Fault Classification over Time 

2.1 Data Collection and Feature Extraction 

The observable data consists of various sensor readings (in the form of sampled 
time series) which can be monitored while the antenna is in tracking mode. The 
approach we take is to estimate the state of the system at discrete intervals in time. 
A feature vector ~ of dimension k is estimated from sets of successive windows 
of sensor data. A pattern recognition component then models the instantaneous 
estimate of the posterior class probability given the features, p(wd~), 1 :::; i :::; m. 
Finally, a hidden Markov model is used to take advantage of temporal context and 
estimate class probabilities conditioned on recent past history. This hierarchical 
pattern of information flow, where the time series data is transformed and mapped 
into a categorical representation (the fault classes) and integrated over time to 
enable robust decision-making, is quite generic to systems which must passively 
sense and monitor their environment in real-time. 

Experimental data was gathered from a new antenna at a research ground-station 
at the Goldstone DSN complex in California. We introduced hardware faults in a 
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controlled manner by switching faulty components in and out of the control loop. 
Obtaining data in this manner is an expensive and time-consuming procedure since 
the antenna is not currently instrumented for sensor data acquisition and is located 
in a remote location of the Mojave Desert in Southern California. Sensor variables 
monitored included wind speed, motor currents, tachometer voltages, estimated 
antenna position, and so forth, under three separate fault conditions (plus normal 
conditions) . 

The time series data was segmented into windows of 4 seconds duration (200 sam
pies) to allow reasonably accurate estimates of the various features. The features 
consisted of order statistics (such as the range) and moments (such as the vari
ance) of particular sensor channels. In addition we also applied an autoregressive
exogenous (ARX) modelling technique to the motor current data, where the ARX 
coefficients are estimated on each individual 4-second window of data. The autore
gressive representation is particularly useful for discriminative purposes (Eggers and 
Khuon, 1990). 

2.2 State Estimation with a Hidden Markov Model 

If one applies a simple feed-forward network model to estimate the class probabilities 
at each discrete time instant t, the fact that faults are typically correlated over time 
is ignored. Rather than modelling the temporal dependence of features, p(.f.(t)I.f.(t-
1), ... ,.f.(0)), a simpler approach is to model temporal dependence via the class 
variable using a Hidden Markov Model (HMM). The m classes comprise the Markov 
model states. Components of the Markov transition matrix A (of dimension m x m) 
are specified subjectively rather than estimated from the data, since there is no 
reliable database of fault-transition information available at the component level 
from which to estimate these numbers. The hidden component of the HMM model 
arises from the fact that one cannot observe the states directly, but only indirectly 
via a stochastic mapping from states to symptoms (the features). For the results 
reported in this paper, the state probability estimates at time t are calculated using 
all the information available up to that point in time. The probability state vector 
is denoted by p(s(t)). The probability estimate of state i at time t can be calculated 
recursively via the standard HMM equations: 

A ( ) ( ()) ( ()) Ui(t)Yi(t) 
U t = A.p s t - 1 and p Si t = ",m A • () • ( ) 

L.,.;j=l U, t Y, t 

where the estimates are initialised by a prior probability vector p(s(O)), the Ui(t) 
are the components of u(t), 1 ~ i ~ m, and the Yi(t) are the likelihoods p(.f.IWi) 
produced by the particular classifier being used (which can be estimated to within 
a normalising cons tan t by p( Wi I.f.) / p( Wi)) . 

2.3 Classification Results 

We compare a feedforward multi-layer perceptron model (single hidden layer with 12 
sigmoidal units, trained using the squared error objective function and a conjugate
gradient version of backpropagation) and a simple maximum-likelihood Gaussian 
classifier (with an assumed diagonal covariance matrix, variances estimated from 
the data), both with and without the HMM component. Table 1 summarizes the 
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Figure 1: Stabilising effect of Markov component 

overall classification accuracies obtained for each of the models - these results are 
for models trained on data collected in early 1991 (450 windows) which were then 
field-tested in real-time at the antenna site in November 1991 (596 windows)_ There 
were 12 features used in this particular experiment, including both ARX and time
domain features. Clearly, the neural-Markov model is the best model in the sense 
that no samples at all were misclassified - it is significantly better than the simple 
Gaussian classifier. Without the Markov component, the neural model still classified 
quite well (0 .84% error rate). However all of its errors were false alarms (the classifier 
decision was a fault label, when in reality conditions were normal) which are highly 
undesirable from an operational viewpoint - in this context, the Markov model 
has significant practical benefit. Figure 1 demonstrates the stabilising effect of the 
Markov model over time. The vertical axis corresponds to the probability estimate 
of the model for the true class. Note the large fluctuations and general uncertainty 
in the neural output (due to the inherent noise in the feature data) compared to 
the stability when temporal context is modelled. 

Table 1: Classification results for different models 

Model 

3 Detecting novel classes 

While the neural model described above exhibits excellent performance in terms 
of discrimination, there is another aspect to classifier performance which we must 
consider for applications of this nature: how will the classifier respond if presented 
with data from a class which was not included in the training set ? Ideally, one 
would like the model to detect this situation. For fault diagnosis the chance that 
one will encounter such novel classes under operational conditions is quite high since 
there is little hope of having an exhaustive library of faults to train on. 

In general, whether one uses a neural network, decision tree or other classification 
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Figure 2: Data from a novel class C 

method, there are few guarantees about the extrapolation behaviour of the trained 
classification model. Consider Figure 2, where point C is far away from the "A" s 
and "B"s on which the model is trained. The response of the trained model to 
point C may be somewhat arbitrary, since it may lie on either side of a decision 
boundary depending on a variety of factors such as initial conditions for the training 
algorithm, objective function used, particular training data, and so forth. One might 
hope that for a feedforward multi-layer perceptron, novel input vectors would lead 
to low response for all outputs. However, if units with non-local response functions 
are used in the model (such as the commonly used sigmoid function), the tendency 
of training algorithms such as backpropagation is to generate mappings which have 
a large response for at least one of the classes as the attributes take on values which 
extend well beyond the range of the training data values. Leonard and Kramer 
(1990) discuss this particular problem of poor extrapolation in the context of fault 
diagnosis of a chemical plant. The underlying problem lies in the basic nature of 
discriminative models which focus on estimating decision boundaries based on the 
differences between classes. In contrast, if one wants to detect data from novel 
classes, one must have a generative model for each known class, namely one which 
specifies how the data is generated for these classes. Hence, in a probabilistic 
framework, one seeks estimates of the probability density function of the data given 
a particular class, �f�(�~�.�l�w�i�)�'� from which one can in turn use Bayes' rule for prediction: 

(1) 

4 Kernel Density Estimation 

Unless one assumes a particular parametric form for �f�(�~�l�w�d�,� then it must be some
how estimated from the data. Let us ignore the multi-class nature of the problem 
temporarily and simply look at a single-class case. We focus here on the use of 
kernel-based methods (Silverman, 1986). Consider the I-dimensional case of esti
mating the density f( x) given samples {Xi}, 1 ::; i ::; N. The idea is simple enough: 
we obtain an estimate j(x), where x is the point at which we wish to know the 
density, by summing the contributions of the kernel K((x - xi)/h) (where h is the 
bandwidth of the estimator, and K(.) is the kernel function) over all the samples 
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