The Efficient Learning of Multiple Task
Sequences

Satinder P. Singh
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

Abstract

I present a modular network architecture and a learning algorithm based
on incremental dynamic programming that allows a single learning agent
to learn to solve multiple Markovian decision tasks (MDTs) with signif-
icant transfer of learning across the tasks. I consider a class of MDTs,
called composite tasks, formed by temporally concatenating a number of
simpler, elemental MDTs. The architecture is trained on a set of compos-
ite and elemental MDTs. The temporal structure of a composite task is
assumed to be unknown and the architecture learns to produce a tempo-
ral decomposition. It is shown that under certain conditions the solution
of a composite MDT can be constructed by computationally inexpensive
modifications of the solutions of its constituent elemental MDTs.

1 INTRODUCTION

Most applications of domain independent learning algorithms have focussed on
learning single tasks. Building more sophisticated learning agents that operate in
complex environments will require handling multiple tasks/goals (Singh, 1992). Re-
search effort on the scaling problem has concentrated on discovering faster learning
algorithms, and while that will certainly help, techniques that allow transfer of
learning across tasks will be indispensable for building autonomous learning agents
that have to learn to solve multiple tasks. In this paper I consider a learning agent
that interacts with an external, finite-state, discrete-time, stochastic dynamical en-
vironment and faces multiple sequences of Markovian decision tasks (MDTs).

251

252

Singh

Each MDT requires the agent to execute a sequence of actions to control the envi-
ronment, either to bring it to a desired state or to traverse a desired state trajectory
over time. Let S be the finite set of states and A be the finite set of actions available
to the agent.! At each time step ¢, the agent observes the system’s current state
z; € S and executes action a; € A. As a result, the agent receives a payoff with
expected value R(z:,a;) € R and the system makes a transition to state z,4; € S
with probability P;,,,,(a:). The agent’s goal is to learn an optimal closed loop
control policy, i.e., a function assigning actions to states, that maximizes the agent'’s
objective. The objective used in this paper is J = Y ,o, 7' R(z¢, at), i.e., the sum
of the payoffs over an infinite horizon. The discount factor, 0 < 7y < 1, allows
future payoff to be weighted less than more immediate payoff. Throughout this
paper, I will assume that the learning agent does not have access to a model of the
environment. Reinforcement learning algorithms such as Sutton’s (1988) temporal
difference algorithm and Watkins’s (1989) Q-learning algorithm can be used to learn
to solve single MDTs (also see Barto et al., 1991).

I consider compositionally-structured MDTs because they allow the possibility of
sharing knowledge across the many tasks that have common subtasks. In general,
there may be n elemental MDT's labeled T4, T3, ..., T,. Elemental MDTs cannot be
decomposed into simpler subtasks. Composite MDTs, labeled Cy, C3,...,Cy,, are
produced by temporally concatenating a number of elemental MDTs. For example,
C; = [T(3,1)T(5,2) - - - T(j, k)] is composite task j made up of k elemental tasks that
have to be performed in the order listed. For 1 < i < k, T'(4,1) € {T1,T3,..., T, } is
the it" elemental task in the list for task C;. The sequence of elemental tasks in a
composite task will be referred to as the decomposition of the composite task; the
decomposition is assumed to be unknown to the learning agent.

Compositional learning involves solving a composite task by learning to compose
the solutions of the elemental tasks in its decomposition. It is to be emphasized that
given the short-term, evaluative nature of the payoff from the environment (often
the agent gets informative payoff only at the completion of the composite task),
the task of discovering the decomposition of a composite task is formidable. In this
paper I propose a compositional learning scheme in which separate modules learn
to solve the elemental tasks, and a task-sensitive gating module solves composite
tasks by learning to compose the appropriate elemental modules over time.

2 ELEMENTAL AND COMPOSITE TASKS

All elemental tasks are MDTs that share the the same state set S, action set 4, and
have the same environment dynamics. The payoff function for each elemental task
Ti, 1 < i < m,is Ri(z,a) = 3, s Pzy(a)ri(y) — c(z,a), where r;(y) is a positive
reward associated with the state y resulting from executing action a in state z for
task T;, and c¢(z,a) is the positive cost of executing action a in state z. I assume
that r;(z) = 0 if = is not the desired final state for T;. Thus, the elemental tasks
share the same cost function but have their own reward functions.

A composite task is not itself an MDT because the payoff is a function of both

1The extension to the case where different sets of actions are available in different states
is straightforward.

The Efficient Learning of Multiple Task Sequences

the state and the current elemental task, instead of the state alone. Formally, the
new state set? for a composite task, S’, is formed by augmenting the elements of
set S by n bits, one for each elemental task. For each =’ € S’, the projected state
z € S is defined as the state obtained by removing the augmenting bits from z'.
The environment dynamics and cost function, ¢, for a composite task is defined by
assigning to each 2’ € S’ and a € A the transition probabilities and cost assigned
to the projected state z € § and a € A. The reward function for composite task
Cj, r§, is defined as follows. rj(z’) > 0if the followmg are all true: i) the projected
sta.te z is the final state for some elementa.l task in the decomposition of Cj, say
task T}, ii) the augmenting bits of z’ corresponding to elemental tasks appearing
before and including subtask T; in the decomposition of C; are one, and iii) the rest
of the augmenting bits are zero; r§(z') = 0 everywhere else.

3 COMPOSITIONAL Q-LEARNING

Following Watkins (1989), I define the Q-value, Q(z,a), for z € S and a € 4, as the
expected return on taking action a in state z under the condition that an optimal
policy is followed thereafter. Given the Q-values, a greedy policy that in each state
selects an action with the highest associated Q-value, is optimal. Q-learning works
as follows. On executing action a in state z at time ¢, the resulting payoff and next

state are used to update the estimate of the Q-value at time t, Qt(z,a):
Q41(2,0) = (10-a)Qu(z,0) + [R(z,0) + Ymax Qu(w,a)), (1)

where y is the state at time ¢ + 1, and o, is the value of a positive learning rate
parameter at time ¢. Watkins and Dayan (1992) prove that under certain conditions
on the sequence {a;}, if every state-action pair is updated infinitely often using

Equation 1, Q; converges to the true Q-values asymptotically.

Compositional Q-learning (CQ-learning) is a method for constructing the Q-values
of a composite task from the Q-values of the elemental tasks in its decomposition.
Let Qr,(z,a) be the Q-value of (z,a), z € S and a € A, for elemental task T;,
and let ng(z',a) be the Q-value of (2/,a), for 2’ € S’ and a € A, for task T;
when performed as part of the composite task C; = [T'(j,1)---T(j,k)]. Assume
T; = T(j,1). Note that the superscript on Q refers to the task and the subscript
refers to the elemental task currently being performed. The absence of a superscript
implies that the task is elemental.

Consider a set of undiscounted (y = 1) MDTs that have compositional structure
and satisfy the following conditions:

(A1) Each elemental task has a single desired final state.

(A2) For all elemental and composite tasks, the expected value of undiscounted
return for an optimal policy is bounded both from above and below for all states.
(A3) The cost associated with each state-action pair is independent of the task
being accomplished.

?The theory developed in this paper does not depend on the particular extension of S
chosen, as long as the appropriate connection between the new states and the elements of
S can be made.

253

254

Singh

(A4) For each elemental task T;, the reward function r; is zero for all states except
the desired final state for that task. For each composite task C;, the reward function
r§ is zero for all states except possibly the final states of the elemental tasks in its
decomposition (Section 2).

Then, for any elemental task T; and for all composite tasks C; containing elemental
task T;, the following holds:

Qs(z',6) = Qi (z,a)+ K(C;j,T(5,1)), (2)

for all 2’ € S’ and a € A, where z € S is the projected state, and K(C;,T(5,1)) isa
function of the composite task C; and subtask T'(7,!), where T; = T'(j,1). Note that
K(C;,T(j,1)) is independent of the state and the action. Thus, given solutions of
the elemental tasks, learning the solution of a composite task with n elemental tasks
requires learning only the values of the function K for the n different subtasks. A
proof of Equation 2 is given in Singh (1992).

)
Aw:;.ﬁw 8
|—~ Blas K Ve
"‘ Network \"')
Task |
N
L * :,“]
Qating * Stochastie
Network i Swich
*n *| ®n
Amb;:‘w - q'I q2 (LN ql‘!
White
Nolse
s [&
Q Q Q
Nlﬁ;\ﬂl‘k Nﬂ:ﬂ‘k TE) ﬂ.hn\'ﬂk

Figure 1: The CQ-Learning Architecture (CQ-L). This figure is adapted from Jacobs
et al. (1991). See text for details.

Equation 2 is based on the assumption that the decomposition of the composite
tasks is known. In the next Section, I present a modular architecture and learning
algorithm that simultaneously discovers the decomposition of a composite task and
implements Equation 2.

4 CQ-L: CQ-LEARNING ARCHITECTURE

Jacobs (1991) developed a modular connectionist architecture that performs task
decomposition. Jacobs’s gating architecture consists of several expert networks and
a gating network that has an output for each expert network. The architecture
has been used to learn multiple non-sequential tasks within the supervised learning

