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Abstract 

We compare two strategies for training connectionist (as well as non
connectionist) models for statistical pattern recognition. The probabilistic strat
egy is based on the notion that Bayesian discrimination (i.e .• optimal classifica
tion) is achieved when the classifier learns the a posteriori class distributions of 
the random feature vector. The differential strategy is based on the notion that 
the identity of the largest class a posteriori probability of the feature vector is 
all that is needed to achieve Bayesian discrimination. Each strategy is directly 
linked to a family of objective functions that can be used in the supervised training 
procedure. We prove that the probabilistic strategy - linked with error measure 
objective functions such as mean-squared-error and cross-entropy - typically 
used to train classifiers necessarily requires larger training sets and more complex 
classifier architectures than those needed to approximate the Bayesian discrim
inant function. In contrast. we prove that the differential strategy - linked 
with classificationfigure-of-merit objective functions (CF'MmoIlO) [3] - requires 
the minimum classifier functional complexity and the fewest training examples 
necessary to approximate the Bayesian discriminant function with specified pre
cision (measured in probability of error). We present our proofs in the context of 
a game of chance in which an unfair C-sided die is tossed repeatedly. We show 
that this rigged game of dice is a paradigm at the root of all statistical pattern 
recognition tasks. and demonstrate how a simple extension of the concept leads 
us to a general information-theoretic model of sample complexity for statistical 
pattern recognition. 
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1 Introduction 

Creating a connectionist pattern classifier that generalizes well to novel test data has recently 
focussed on the process of finding the network architecture with the minimum functional 
complexity necessary to model the training data accurately (see, for example, the works of 
Baum. Cover, Haussler, and Vapnik). Meanwhile, relatively little attention has been paid to 
the effect on generalization of the objective function used to train the classifier. In fact, the 
choice of objective function used to train the classifier is tantamount to a choice of training 
strategy, as described in the abstract [2,3] . 

We formulate the proofs outlined in the abstract in the context of a rigged game of dice in 
which an unfair C-sided die is tossed repeatedl y. Each face of the die has some probability of 
turning up. We assume that one face is always more likely than all the others. As a result, all 
the probabilities may be different, but at most C - 1 of them can be identical. The objective 
of the game is to identify the most likely die face with specified high confidence. The 
relationship between this rigged dice paradigm and statistical pattern recognition becomes 
clear if one realizes that a single unfair die is analogous to a specific point on the domain 
of the randomfeature vector being classified. Just as there are specific class probabilities 
associated with each point in feature vector space, each die has specific probabilities 
associated with each of its faces. The number of faces on the die equals the number of 
classes associated with the analogous point in feature vector space. Identifying the most 
likely die face is equivalent to identifying the maximum class a posteriori probability for 
the analogous point in feature vector space - the requirement for Bayesian discrimination. 
We formulate our proofs for the case of a single die, and conclude by showing how a simple 
extension of the mathematics leads to general expressions for pattern recognition involving 
both discrete and continuous random feature vectors. 

Authors' Note: In the interest of brevity, our proofs are posed as answers to questions that 
pertain to the rigged game of dice. It is hoped that the reader will find the relevance of 
each question/answer to statistical pattern recognition clear. Owing to page limitations, we 
cannot provide our proofs in full detail; the reader seeking such detail should refer to [1], 
Definitions of symbols used in the following proofs are given in table 1. 

1.1 A Fixed-Point Representation 

The Mq-bit approximation qM[X] to the real number x E (-1, 1] is of the form 

MSB (most significant bit) = sign [x] 

MSB - 1 = 2-1 (1) 
! 

LSB (least significant bit) = 2-(M.-1) 

with the specific value defined as the mid-point of the 2-(M.-1) -wide interval in which x 
is located: 

A { sign[x] . (L Ixl . 2(M.-l) J . 2-(M.-1) + 2-M.) , Ixl < 1 
qM[X] = (2) 

sign [x] . (1 - 2-M.) , Ixl = 1 

The lower and upper bounds on the quantization interval are 

LM.[X] < x < UM.[X] (3) 
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Thble 1: Definitions of symbols used to describe die faces, probabilities, probabilistic 
differences, and associated estimates. 

Symbol 

Wrj 
P(Wrj) 

kq 
P(Wrj) 

where 

and 

Definition 

The lrUe jth most likely die face (w;j is the estimated jth most likely face). 
The probability of the lrUe jth most likely die face. 
The number of occurrences of the true jth most likely die face. 
An empirical estimate of the probability of the true jth most likely die face: 

P(wrj) =!c;. (note n denotes the sample size) 
The probabilistic difference involving the true rankings and probabilities of the 
C die faces: 
..1ri = P(Wri) - SUPj,..i P(Wrj) 

The probabilistic difference involving the true rankings but empirically estimated 
probabilities of the C die faces: 

" • k,; - lupifi ~ 
..1ri = P(Wri) - sUPhfj P(wrj) = II 

(4) 

(5) 

The fixed-point representation described by (1) - (5) differs from standard fixed-point 
representations in its choice of quantization interval. The choice of (2) - (5) represents zero 
as a negative - more precisely, a non-positive - finite precision number. See [1] for the 
motivation of this format choice. 

1.2 A Mathematical Comparison of the Probabilistic and Differential Strategies 

The probabilistic strategy for identifying the most likely face on a die with C faces involves 
estimating the C face probabilities. In order for us to distinguish P(Wrl) from P(Wr2) , we 
must choose Mq (i.e. the number of bits in our fiXed-point representation of the estimated 
probabilities) such that 

(6) 

The distinction between the differential and probabilistic strategies is made more clear if 
one considers the way in which the Mq-bit approximation jrl is computed from a random 
sample containing krl occurrences of die face Wrl and kl'2. occurrences of die face Wr2. For 
the differential strategy 

.1rl dijferelltUJl = qM [krl : kl'2.] 

and for the probabilistic strategy 

.1rl probabilistic 

(7) 

(8) 
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where 
6. 

.d; P(Wi) - sup P(Wj) i = 1,2, ... C (9) 
iii 

Note that when i = rl 
(10) 

and when i ::f r 1 
(ll) 

Note also 
(12) 

Since 
rC 

= L P(Wj) - (C - 2) P(Wrl) (13) 
i=1 i..,.3 

we can show that the C differences of (9) yield the C probabilities by 

= ~ [1 - t .di ] 
C izr2 (14) 

P(Wrj) = .drj + P(Wrl) Vj > 1 

Thus, estimating the C differences of (9) is equivalent to estimating the C probabilities 
P(Wl), P(W2) , ... ,P(wc). 

Clearly, the sign of L1rl in (7) is modeled correctly (i.e., L1rl differentWl can correctly identify 
the most likely face) when Mq = 1, while this is typically not the case for .dr l probabilistic 

in (8). In the latter case, L1rl probabilistic is zero when Mq = 1 because qm[p(Wrl)] and 
QM[P(Wr'2)] are indistinguishable for Mq below some minimal value implied by (6). That 
minimal value of Mq can be found by recognizing that the number of bits necessary for (6) 
to hold for asymptotically large n (Le., for the quantized difference in (8) to exceed one 
LSB) is 

1 + r -log2 [.drd 1, 
~" J 

sign bit magnit~de bits 

-log2 [P(Wrj)] :3 Z+ j E {1,2} 

~ + J -log2 [.drd 1 + 1) 

sign bit magnit~de bits 

otherwise 

(15) 
where Z+ represents the set of all positive integers. Note that the conditional nature of 
Mq min in (15) prevents the case in which lime-+o P(Wrl) - € = LM. [P(Wrl)] or P(Wr2) = 
UM.[P(Wr2)]; either case would require an infinitely large sample size before the variance 
of the corresponding estimated probability became small enough to distinguish QM[P(Wrl)] 
from QM[P(Wr'2)]. The sign bit in (15)is not required to estimate the probabilities themselves 
in (8), but it is necessary to compute the difference between the two probabilities in that 
equation - this difference being the ultimate computation by which we choose the most 
likely die face. 
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1.3 The Sample Complexity Product 

We introduce the sample complexity product (SCP) as a measure of both the number of 
samples and the functional complexity (measured in bits) required to identify the most 
likely face of an unfair die with specified probability. 

A 
SCP = n . Mq s.t. P(most likely face correctly IO'd) ~ a (16) 

2 A Comparison of the Sample Complexity Requirements for the 
Probabilistic and Differential Strategies 

Axiom 1 We view the number of bits Mq in the finite-precision approximation qM[X] to 
the real number x E (-1, 1] as a measure of the approximation's functional complexity. 
That is, the functional complexity of an approximation is the number of bits with which it 
represents a real number on (-1, 1]. 

Assumption 1 If P(Wrl) > P(Wr2), then P(Wrl) will be greater than P(Wrj) Vj> 2 (see [1] 
for an analysis of cases in which this assumption is invalid). 

Question: What is the probability that the most likely face of an unfair die will be empiri
cally identifiable after n tosses? 

Answer for the probabilistic strategy: 

P (qM[P(Wrl)] > qM[P(Wrj)] , V j > 1) 

~ n! t P(Wrl)k., [t P(Wr2)~ (1 - P(Wrl) - P(Wr2))(II-k., -~)] (17) 
krl! kr2! (n - krl - kr2)! 

k.1=>', ~=>'l 

where 

Al = max ( B + 1, nC -_k~ + 1 ) VC > 2 

Vl = n 

A2 = 0 (18) 

V]. = min (B , n - krl ) 

B = {BM9} = kUN9 [P(Wr2)] = kt..vq [P(Wrl)] - 1 

There is a simple recursion in [1] by which every possible boundary for M q-bit quantization 
leads to itself and two additional boundaries in the set {BM9} for (Mq + I)-bit quantization. 

Answer for the differential strategy: 
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where 

Al = ( n �-�k�~� ) max kL.vt [Llrd, C _ 1 + 1 \lC > 2 

VI = n (20) 

A2 = max ( 0 , krl - kUJft [Ll rlJ ) 

Vl = min (krl - kr.Jft [Llrd , n - krl ) 

Since the multinomial distribution is positive semi-definite, it should be clear from a 

comparisonof(17)-(18) and (19)-(20) thatP (LMt[Llrd < Lirl < UMt[Llrtl) islargest 

(and larger than any possible P (qM[P(Wrl)] > qM[P(Wrj)] , \I j > 1) ) for a given sample 

size n when the differential strategy is employed with Mq = 1 such that LMt [Llrtl = 0 and 
UM [Llrd = 1 (Le., lr. [Llrtl = 1 and �k�u�~� [Llrd = n). The converse is also true, to wit: 

t ALNt -t 

Theorem 1 For aftxed value ofn in (19), the l-bitapproximationto Llrl yields the highest 
probability of identifying the most likely die face Wrl . 

It can be shown that theorem 1 does not depend on the validity of assumption 1 [1]. Given 
Axiom 1, the following corollary to theorem 1 holds: 

Corollary 1 The differential strategy's minimum-complexity l-bit approximation of Llrl 
yields the highest probability of identifying the most likely die face Wrl for a given number 
of tosses n. 

Corollary 2 The differential strategy's minimum-complexity l-bit approximation of Llrl 
requires the smallest sample size necessary (nmi,,) to identify P(Wrl) -and thereby the most 
likely die face Wrl - correctly with specified confidence. Thus, the differential strategy 
requires the minimum SCP necessary to identify the most likely die face with specified 
confidence. 

2.1 Theoretical Predictions versus Empirical Results 

Figures 1 and 2 compare theoretical predictions of the number of samples n and the number 
of bits Mq necessary to identify the most likely face of a particular die versus the actual 
requirements obtained from 1000 games (3000 tosses of the die in each game). The die has 
five faces with probabilities P(Wrl) = 0.37 ,P(Wr2) = 0.28, P(Wr3) = 0.2, P(Wr4) = 0.1 ,and 
P(Wrl) = 0.05. The theoretical predictions for Mq and n (arrows with boxed labels based 
on iterative searches employing equations (17) and (19)) that would with 0.95 confidence 
correctly identify the most likely die face Wrl are shown to correspond with the empirical 
results: in figure 1 the empirical 0.95 confidence interval is marked by the lower bound of 
the dark gray and the upper bound of the light gray; in figure 2 the empirical 0.95 confidence 
interval is marked by the lower bound of the P(Wrl) distribution and the upper bound of the 






