Evaluation of Adaptive Mixtures of Competing Experts

Part of Advances in Neural Information Processing Systems 3 (NIPS 1990)

Bibtex Metadata Paper


Steven Nowlan, Geoffrey E. Hinton


We compare the performance of the modular architecture, composed of competing expert networks, suggested by Jacobs, Jordan, Nowlan and Hinton (1991) to the performance of a single back-propagation network on a complex, but low-dimensional, vowel recognition task. Simulations reveal that this system is capable of uncovering interesting decompositions in a complex task. The type of decomposition is strongly influenced by the nature of the input to the gating network that decides which expert to use for each case. The modular architecture also exhibits consistently better generalization on many variations of the task.