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Abstract 

We present a new learning architecture: the Decision Directed Acyclic 
Graph (DDAG), which is used to combine many two-class classifiers 
into a multiclass classifier. For an N -class problem, the DDAG con
tains N(N - 1)/2 classifiers, one for each pair of classes. We present a 
VC analysis of the case when the node classifiers are hyperplanes; the re
sulting bound on the test error depends on N and on the margin achieved 
at the nodes, but not on the dimension of the space. This motivates an 
algorithm, DAGSVM, which operates in a kernel-induced feature space 
and uses two-class maximal margin hyperplanes at each decision-node 
of the DDAG. The DAGSVM is substantially faster to train and evalu
ate than either the standard algorithm or Max Wins, while maintaining 
comparable accuracy to both of these algorithms. 

1 Introduction 

The problem of multiclass classificatIon, especially for systems like SVMs, doesn't present 
an easy solution. It is generally simpler to construct classifier theory and algorithms for two 
mutually-exclusive classes than for N mutually-exclusive classes. We believe constructing 
N -class SVMs is still an unsolved research p~oblem. 

The standard method for N -class SVMs [10] is to construct N SVMs. The ith SVM will be 
trained with all of the examples in the ith class with positive labels, and all other examples 
with negative labels. We refer to SVMs trained in this way as J -v-r SVMs (short for one
versus-rest). The final output of the N l-v-r SVMs is the class that corresponds to the SVM 
with the highest output value. Unfortunately, there is no bound on the generalization error 
for the l-v-r SVM, and the training time of the standard method scales linearly with N. 

Another method for constructing N -class classifiers from SVMs is derived from previous 
research into combining two-class classifiers. Knerr [5] suggested constructing all possible 
two-class classifiers from a training set of N classes, each classifier being trained on only 
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two out of N classes. There would thus be K = N (N - 1) /2 classifiers. When applied to 
SVMs, we refer to this as J -v-J SVMs (short for one-versus-one). 

Knerr suggested combining these two-class classifiers with an "AND" gate [5]. Fried
man [4] suggested a Max Wins algorithm: each I-v-l classifier casts one vote for its pre
ferred class, and the final result is the class with the most votes. Friedman shows cir
cumstances in which this algorithm is Bayes optimal. KreBel [6] applies the Max Wins 
algorithm to Support Vector Machines with excellent results. 

A significant disadvantage of the I-v-l approach, however, is that, unless the individual 
classifiers are carefully regularized (as in SVMs), the overall N -class classifier system will 
tend to overfit. The "AND" combination method and the Max Wins combination method 
do not have bounds on the generalization error. Finally, the size of the I-v-l classifier may 
grow superlinearly with N, and hence, may be slow to evaluate on large problems. 

In Section 2, we introduce a new multiclass learning architecture, called the Decision Di
rected Acyclic Graph (DDAG). The DDAG contains N(N - 1)/2 nodes, each with an 
associated I-v-l classifier. In Section 3, we present a VC analysis of DDAGs whose clas
sifiers are hyperplanes, showing that the margins achieved at the decision nodes and the 
size of the graph both affect their performance, while the dimensionality of the input space 
does not. The VC analysis indicates that building large margin DAGs in high-dimensional 
feature spaces can yield good generalization performance. Using such bound as a guide, 
in Section 4, we introduce a novel algorithm for multiclass classification based on placing 
l-v-l SVMs into nodes of a DDAG. This algorithm, called DAGSVM, is efficient to train 
and evaluate. Empirical evidence of this efficiency is shown in Section 5. 

2 Decision DAGs 

A Directed Acyclic Graph (DAG) is a graph whose edges have an orientation and no cycles. 
A Rooted DAG has a unique node such that it is the only node which has no arcs pointing 
into it. A Rooted Binary DAG has nodes which have either 0 or 2 arcs leaving them. 
We will use Rooted Binary DAGs in order to define a class of functions to be used in 
classification tasks. The class of functions computed by Rooted Binary DAGs is formally 
defined as follows. 

Definition 1 Decision DAGs (DDAGs). Given a space X and a set of boolean functions 
F = {f : X -t {a, I}}, the class DDAG(F) of Decision DAGs on N classes over Fare 
functions which can be implemented using a rooted binary DAG with N leaves labeled by 
the classes where each of the K = N(N - 1)/2 internal nodes is labeled with an element 
of F. The nodes are arranged in a triangle with the single root node at the top, two nodes 
in the second layer and so on until the jinallayer of N leaves. The i-th node in layer j < N 
is connected to the i-th and (i + 1)-st node in the (j + 1)-st layer. 

To evaluate a particular DDAG G on input x EX, starting at the root node, the binary 
function at a node is evaluated. The node is then exited via the left edge, if the binary 
function is zero; or the right edge, if the binary function is one. The next node's binary 
function is then evaluated. The value of the decision function D (x) is the value associated 
with the final leaf node (see Figure l(a». The path taken through the DDAG is known 
as the evaluation path. The input x reaches a node of the graph, if that node is on the 
evaluation path for x. We refer to the decision node distinguishing classes i and j as the 
ij-node. Assuming that the number of a leaf is "its class, this node is the i-th node in the 
(N - j + i)-th layer provided i < j. Similarly the j-nodes are those nodes involving class 
j, that is, the internal nodes on the two diagonals containing the leaf labeled by j. 

The DDAG is equivalent to operating on a list, where each node eliminates one class from 
the list. The list is initialized with a list of all classes. A test point is evaluated against the 
decision node that corresponds to the first and last elements of the list. If the node prefers 
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Figure 1: (a) The decision DAG for finding the best class out of four classes. The equivalent 
list state for each node is shown next to that node. (b) A diagram of the input space of a 
four-class problem. A I-v-l SVM can only exclude one class from consideration. 

one of the two classes, the other class is eliminated from the list, and the DDAG proceeds 
to test the first and last elements of the new list. The DDAG terminates when only one 
class remains in the list. Thus, for a problem with N classes, N - 1 decision nodes will be 
evaluated in order to derive an answer. 

The current state of the list is the total state of the system. Therefore, since a list state 
is reachable in more than one possible path through the system, the decision graph the 
algorithm traverses is a DAG, not simply a tree. 

Decision DAGs naturally generalize the class of Decision Trees, allowing for a more ef
ficient representation of redundancies and repetitions that can occur in different branches 
of the tree, by allowing the merging of different decision paths. The class of functions 
implemented is the same as that of Generalized Decision Trees [1], but this particular rep
resentation presents both computational and learning-theoretical advantages. 

3 Analysis of Generalization 

In this paper we study DDAGs where the node-classifiers are hyperplanes. We define a 
Perceptron DDAG to be a DDAG with a perceptron at every node. Let w be the (unit) 
weight vector correctly splitting the i and j classes at the ij-node with threshold O. We 
define the margin of the ij-node to be I = minc(x)==i,j {I(w, x) - Ol}, where c(x) is the 
class associated to training example x. Note that, in this definition, we only take into 
account examples with class labels equal to i or j . 

Theorem 1 Suppose we are able to classify a random m sampLe of LabeLed examples using 
a Perceptron DDAG on N classes containing K decision nodes with margins Ii at node i, 
then we can bound the generalization error with probability greater than 1 - 6 to be less 
than 

130R2 ( 2(2m)K) 
--:;;;:- D' log ( 4em) log( 4m) + log 6 ' 

where D' = L~l ~, and R is the radius of a ball containing the distribution's support. 

Proof: see Appendix 0 
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Theorem 1 implies that we can control the capacity of DDAGs by enlarging their margin. 
Note that, in some situations, this bound may be pessimistic: the DDAG partitions the 
input space into poly topic regions, each of which is mapped to a leaf node and assigned 
to a specific class. Intuitively, the only margins that should matter are the ones relative to 
the boundaries of the cell where a given training point is assigned, whereas the bound in 
Theorem 1 depends on all the margins in the graph. 

By the above observations, we would expect that a DDAG whose j-node margins are large 
would be accurate at identifying class j , even when other nodes do not have large margins. 
Theorem 2 substantiates this by showing that the appropriate bound depends only on the 
j-node margins, but first we introduce the notation, Ej(G) = P{x : (x in class j and x is 
misclassified by G) or x is misclassified as class j by G}. 

Theorem 2 Suppose we are able to correctly distinguish class j from the other classes in 
a random m-sample with a DDAG Gover N classes containing K decision nodes with 
margins 'Yi at node i, then with probability 1 - J, 

130R2 ( 2(2m)N-l) 
Ej(G) ~ ----;:;;- D'log(4em) log(4m) + log J ' 

where D' = ~.. d ~,and R is the radius of a ball containing the support of the 
L-tErno es "Y; 

distribution. 

Proof: follows exactly Lemma 4 and Theorem I , but is omitted.O 

4 The DAGSVM algorithm 

Based on the previous analysis, we propose a new algorithm, called the Directed Acyclic 
Graph SVM (DAGSVM) algorithm, which combines the results of I-v-I SVMs. We will 
show that this combination method is efficient to train and evaluate. 

The analysis of Section 3 indicates that maximizing the margin of all of the nodes in a 
DDAG will minimize a bound on the generalization error. This bound is also independent 
of input dimensionality. Therefore, we will create a DDAG whose nodes are maximum 
margin classifiers over a kernel-induced feature space. Such a DDAG is obtained by train
ing each ij-node only on the subset of training points labeled by i or j. The final class 
decision is derived by using the DDAG architecture, described in Section 2. 

The DAGSVM separates the individual classes with large margin. It is safe to discard the 
losing class at each I-v-l decision because, for the hard margin case, all of the examples 
of the losing class are far away from the decision surface (see Figure 1 (b)). 

For the DAGSVM, the choice of the class order in the list (or DDAG) is arbitrary. The ex
periments in Section 5 simply use a list of classes in the natural numerical (or alphabetical) 
order. Limited experimentation with re-ordering the list did not yield significant changes 
in accuracy performance. 

The DAGSVM algorithm is superior to other multiclass SVM algorithms in both training 
and evaluation time. Empirically, SVM training is observed to scale super-linearly with the 
training set size m [7], according to a power law: T = crn"Y , where 'Y ~ 2 for algorithms 
based on the decomposition method, with some proportionality constant c. For the standard 
I-v-r multiclass SVM training algorithm, the entire training set is used to create all N 
classifiers. Hence the training time for I-v-r is 

T1 - v - r = cNm"Y . (1) 

Assuming that the classes have the same number of examples, training each l-v-I SVM 
only requires 2m/ N training examples. Thus, training K l-v-I SVMs would require 

T - N(N -1) (2m) "Y '" "Y-1 N2- "Y "Y 
I-v-l - c 2 N '" 2 c m . (2) 
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For a typical case, where 'Y = 2, the amount of time required to train all of the 1-v-1 SVMs 
is independent of N , and is only twice that of training a single 1-v-r SVM. Vsing 1-v-1 
SVMs with a combination algorithm is thus preferred for training time. 

5 Empirical Comparisons and Conclusions 

The DAGSVM algorithm was evaluated on three different test sets: the VSPS handwritten 
digit data set [10], the VCI Letter data set [2], and the VCI Covertype data set [2]. The 
USPS digit data consists of 10 classes (0-9), whose inputs are pixels of a scaled input 
image. There are 7291 training examples and 2007 test examples. The UCI Letter data 
consists of 26 classes (A-Z), whose inputs are measured statistics of printed font glyphs. 
We used the first 16000 examples for training, and the last 4000 for testing. All inputs of 
the VCI Letter data set were scaled to lie in [-1 ,1]. The VCI Covertype data consists of 
7 classes of trees, where the inputs are terrain features. There are 11340 training examples 
and 565893 test examples. All of the continuous inputs for Covertype were scaled to have 
zero mean and unit variance. Discrete inputs were represented as a 1-of-n code. 

On each data set, we trained N 1-v-r SVMs and K 1-v-1 SVMs, using SMO [7], with 
soft margins. We combined the 1-v-1 SVMs both with the Max Wins algorithm and with 
DAGSVM. The choice of kernel and of the regularizing parameter C was determined via 
perfonnance on a validation set. The validation performance was measured by training 
on 70% of the training set and testing the combination algorithm on 30% of the training 
set (except for Covertype, where the UCI validation set was used). The best kernel was 
selected from a set of polynomial kernels (from degree 1 through 6), both homogeneous and 
inhomogeneous; and Gaussian kernels, with various a. The Gaussian kernel was always 
found to be best. 

(1 C Error Kernel Training CPU Classifier Size 
Rate (%) Evaluations Time (sec) (Kparameters) 

USPS 
l-v-r 3.58 100 4.7 2936 3532 760 
Max Wins 5.06 100 4.5 1877 307 487 
DAGSVM 5.06 100 4.4 819 307 487 
Neural Net [10] 5.9 

UCI Letter 
1-v-r 0.447 100 2.2 8183 1764 148 
Max Wins 0.632 100 2.4 7357 441 160 
DAGSVM 0.447 10 2.2 3834 792 223 
Neural Net 4.3 

UCI Covertype 
l-v-r 1 10 30.2 7366 4210 105 
Max Wins 1 10 29.0 7238 1305 107 
DAGSVM 1 10 29.2 4390 1305 107 
Neural Net [2] 30 

Table 1: Experimental Results 

Table 1 shows the results of the experiments. The optimal parameters for all three multi
class SVM algorithms are very similar for both data sets. Also, the error rates are similar 
for all three algorithms for both data sets. Neither 1-v-r nor Max Wins is statistically sig
nificantly better than DAGSVM using McNemar's test [3] at a 0.05 significance level for 
USPS or UCI Letter. For VCI Covertype, Max Wins is slightly better than either of the 
other SVM-based algorithms. The results for a neural network trained on the same data 
sets are shown for a baseline accuracy comparison. 

The three algorithms distinguish themselves in training time, evaluation time, and classifier 
size. The number of kernel evaluations is a good indication of evaluation time. For J-v-
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r and Max Wins, the number of kernel evaluations is the total number of unique support 
vectors for all SVMs. For the DAGSVM, the number of kernel evaluations is the number 
of unique support vectors averaged over the evaluation paths through the DDAG taken by 
the test set. As can be seen in Table 1, Max Wins is faster than I-v-r SVMs, due to shared 
support vectors between the I-v-1 classifiers. The DAGSVM has the fastest evaluation. 
The DAGSVM is between a factor of 1.6 and 2.3 times faster to evaluate than Max Wins. 

The DAGSVM algorithm is also substantially faster to train than the standard I-v-r SVM 
algorithm: a factor of 2.2 and 11.5 times faster for these two data sets. The Max Wins 
algorithm shares a similar training speed advantage. 

Because the SVM basis functions are drawn from a limited set, they can be shared across 
classifiers for a great savings in classifier size. The number of parameters for DAGSVM 
(and Max Wins) is comparable to the number of parameters for I-v-r SVM, even though 
there are N (N - 1) /2 classifiers, rather than N. 

In summary, we have created a Decision DAG architecture, which is amenable to a VC
style bound of generalization error. Using this bound, we created the DAGSVM algorithm, 
which places a two-class SVM at every node of the DDAG. The DAGSVM algorithm 
was tested versus the standard 1-v-r multiclass SVM algorithm, and Friedman's Max Wins 
combination algorithm. The DAGSVM algorithm yields comparable accuracy and memory 
usage to the other two algorithms, but yields substantial improvements in both training and 
evaluation time. 

6 Appendix: Proof of Main Theorem 

Definition 2 Let F be a set of reaL vaLued functions. We say that a set of points X is ,
shattered by F relative to r = (rx)xEx, if there are reaL numbers rx, indexed by x E X, 
such that for all binary vectors b indexed by X, there is a function fb E F satisfying 
(2bx - l)fdx) ~ (2bx - l)rx +,. The fat shattering dimension, fatF, of the set F is a 
function from the positive reaL numbers to the integers which maps a vaLue, to the size of 
the largest ,-shattered set, if the set is finite, or maps to infinity otherwise. 

As a relevant example, consider the class Flin = {x -+ (w, x) - (J : Ilwll = I}. We quote 
the following result from [1]. 

Theorem 3 Let Flin be restricted to points in a ball ofn dimensions of radius R about the 
origin. Then 

We wiIl bound generalization with a technique that closely resembles the technique used 
in [1] to study Perceptron Decision Trees. We will now give a lemma and a theorem: the 
lemma bounds the probability over a double sample that the first half has zero error and the 
second error greater than an appropriate E. We assume that the DDAG on N classes has 
K = N(N - 1)/2 nodes and we denote fat}'"l· b) by fatb). 

III 

Lemma 4 Let G be a DDAG on N classes with K = N(N - 1)/2 decision nodes with 
margins ,1,,2, ... "K at the decision nodes satisfying k i = fat ( ,i/8), where fat is con
tinuous from the right. Then the following bound hoLds, p2m{xy:::I a graph G : G 
which separates classes i and j at the ij-node for all x in x, a fraction of points mis-

classified in y > E(m, K, 6).} < 6 where E(m, K, 6) = ! (D log (8m) + log 2;) and 

D = L:~1 ki log(4em/ki ). 

Proof The proof of Lemma 4 is omitted for space reasons, but is formally analogous to the 
proof of Lemma 4.4 in [8], and can easily be reconstructed from it. 0 
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Lemma 4 applies to a particular DDAG with a specified margin Ii at each node. In practice, 
we observe these quantities after generating the DDAG. Hence, to obtain a bound that can 
be applied in practice, we must bound the probabilities uniformly over all of the possible 
margins that can arise. We can now give the proof for Theorem 1. 

Proof of Main Theorem: We must bound the probabilities over different margins. We first 
use a standard result due to Vapnik [9, page 168] to bound the probability of error in terms 
of the probability of the discrepancy between the performance on two halves of a double 
sample. Then we combine this result with Lemma 4. We must consider all possible patterns 
of ki's over the decision nodes. The largest allowed value of ki is m, and so, for fixed K, 
we can bound the number of possibilities by m K . Hence, there are m K of applications of 
Lemma 4 for a fixed N. Since K = N(N - 1)/2, we can let 15k = 8/mK, so thatthe sum 
L:~l 15k = 8. Choosing 

€ (m , K, 8;) = 6~2 (D'IOg(4em) log(4m) + log 2(2;)K) (3) 

in the applications of Lemma 4 ensures that the probability of any of the statements failing 
to hold is less than 8/2. Note that we have replaced the constant 82 = 64 by 65 in order 
to ensure the continuity from the right required for the application of Lemma 4 and have 
upper bounded log(4em/ki ) by log(4em). Applying Vapnik's Lemma [9, page 168] in 
each case, the probability that the statement of the theorem fails to hold is less than 8. 0 

More details on this style of proof, omitted in this paper for space constraints, can be 
found in [1]. 
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