Generalized Prioritized Sweeping

David Andre Nir Friedman Ronald Parr
Computer Science Division, 387 Soda Hall
University of California, Berkeley, CA 94720
{dandre,nir,parr}@cs.berkeley.edu

Abstract

Prioritized sweeping is a model-based reinforcement learning method
that attempts to focus an agent’s limited computational resources to
achieve a good estimate of the value of environment states. To choose ef-
fectively where to spend a costly planning step, classic prioritized sweep-
ing uses a simple heuristic to focus computation on the states that are
likely to have the largest errors. In this paper, we introduce generalized
prioritized sweeping, a principled method for generating such estimates
in a representation-specific manner. This allows us to extend prioritized
sweeping beyond an explicit, state-based representation to deal with com-
pact representations that are necessary for dealing with large state spaces.
We apply this method for generalized model approximators (such as
Bayesian networks), and describe preliminary experiments that compare
our approach with classical prioritized sweeping.

1 Introduction

In reinforcement learning, there is a tradeoff between spending time acting in the envi-
ronment and spending time planning what actions are best. Model-free methods take one
extreme on this question— the agent updates only the state most recently visited. On the
other end of the spectrum lie classical dynamic programming methods that reevaluate the
utility of every state in the environment after every experiment. Prioritized sweeping (PS)
[6] provides a middle ground in that only the most “important” states are updated, according
to a priority metric that attempts to measure the anticipated size of the update for each state.
Roughly speaking, PS interleaves performing actions in the environment with propagating
the values of states. After updating the value of state s, PS examines all states ¢ from which
the agent might reach s in one step and assigns them priority based on the expected size of
the change in their value.

A crucial desideratum for reinforcement learning is the ability to scale-up to complex
domains. For this, we need to use compact (or generalizing) representations of the model and
the value function. While it is possible to apply PS in the presence of such representations
(e.g., see [1]), we claim that classic PS is ill-suited in this case. With a generalizing model,
a single experience may affect our estimation of the dynamics of many other states. Thus,
we might want to update the value of states that are similar, in some appropriate sense, to
s since we have a new estimate of the system dynamics at these states. Note that some of
these states might never have been reached before and standard PS will not assign them a
priority at all.

1002 D. Andre, N. Friedman and R. Parr

In this paper, we present generalized prioritized sweeping (GenPS), a method that utilizes
a formal principle to understand and extend PS and extend it to deal with parametric
representations for both the model and the value function. If GenPS is used with an explicit
state-space model and value function representation, an algorithm similar to the original
(classic) PS results. When a model approximator (such as a dynamic Bayesian network
[2]) is used, the resulting algorithm prioritizes the states of the environment using the
generalizations inherent in the model representation.

2 The Basic Principle

We assume the reader is familiar with the basic concepts of Markov Decision Processes
(MDPs); see, for example, [5]. We use the following notation: A MDP is a 4-tuple,
(S, A,p,r) where S is a set of states, A is a set of actions, p(t | s,a) is a transition
model that captures the probability of reaching state ¢t after we execute action a at state
s, and 7(s) is a reward function mapping S into real-valued rewards. In this paper, we
focus on infinite-horizon MDPs with a discount factor y. The agent’s aim is to maximize
the expected discounted total reward it will receive. Reinforcement learning procedures
attempt to achieve this objective when the agent does not know p and r.

A standard problem in model-based reinforcement learning is one of balancing between
planning (i.e., choosing a policy) and execution. Ideally, the agent would compute the
optimal value function for its model of the environment each time the model changes. This
scheme is unrealistic since finding the optimal policy for a given model is computationally
non-trivial. Fortunately, we can approximate this scheme if we notice that the approximate
model changes only slightly at each step. Thus, we can assume that the value function
from the previous model can be easily “repaired” to reflect these changes. This approach
was pursued in the DYNA [7] framework, where after the execution of an action, the
agent updates its model of the environment, and then performs some bounded number
of value propagation steps to update its approximation of the value function. Each vaiue-
propagation step locally enforces the Bellman equation by setting V(s) « max,c 4 Q(s, a),
where Q(s,a) = #(s) + Y et | s,a)V(s'), p(s' | 8,a) and 7(s) are the agent’s
approximation of the MDP, and V is the agent’s approximation of the value function.

This raises the question of which states should be updated. In this paper we propose the
following general principle:

GenPS Principle: Update states where the approximation of the value
function will change the most. That is, update the states with the largest
Bellman error, E(s) = |V(s) — max,e 4 Q(s,a)|.

The motivation for this principle is straightforward. The maximum Bellman error can be
used to bound the maximum difference between the current value function, ¥ (s) and the
optimal value function, V*(s) [9]. This difference bounds the policy loss, the difference
between the expected discounted reward received under the agent’s current policy and the
expected discounted reward received under the optimal policy.

To carry out this principle we have to recognize when the Bellman error at a state changes.
This can happen at two different stages. First, after the agent updates its model of the world,
new discrepancies between V' (s) and max, Q(s, a) might be introduced, which can increase
the Bellman error at s. Second, after the agent performs some value propagations, V' is
changed, which may introduce new discrepancies.

We assume that the agent maintains a value function and a model that are parameterized
by 6y and 0. (We will sometimes refer to the vector that concatenates these vectors
together into a single, larger vector simply as §.) When the agent observes a transition from
state s to s’ under action a, the agent updates its environment model by adjusting some
of the parameters in @ps. When performing value-propagations, the agent updates ¥ by
updating parameters in fy. A change in any of these parameters may change the Bellman
error at other states in the model. We want to recognize these states without explicitly

Generalized Prioritized Sweeping 1003

computing the Bellman error at each one. Formally, we wish to estimate the change in
error, |Ag(,)|, due to the most recent change Ay in the parameters.

We propose approximating [Ag(,)| by using the gradient of the right hand side of the
Bellman equation (i.e. max, Q(s,a)). Thus, we have: |Ag(,)| ~ |V max, Q(s,a) - Ag|
which estimates the change in the Bellman error at state s as a function of the change in
Q(s, a). The above still requires us to differentiate over a max, which is not differentiable.
In general, we want to to overestimate the change, to avoid “starving” states with non-
negligible error. Thus, we use the following upper bound: |V(max, Q(s, a)) -Ag| <
max, [VQ(s,a) - Ag|.

We now define the generalized prioritized sweeping procedure. The procedure maintains
a priority queue that assigns to each state s a priority, pri(s). After making some changes, we
can reassign priorities by computing an approximation of the change in the value function.

Ideally, this is done using a procedure that implements the following steps:

procedure update-priorities (Ag)
forall s € S pri(s) + pri(s) + maxq |VQ(s, a) - As|.

Note that when the above procedure updates the priority for a state that has an existing
priority, the priorities are added together. This ensures that the priority being kept is an
overestimate of the priority of each state, and thus, the procedure will eventually visit all
states that require updating.

Also, in practice we would not want to reconsider the priority of all states after an update
(we return to this issue below).

Using this procedure, we can now state the general learning procedure:

procedure GenPS ()
loop

perform an action in the environment

update the model; let Ay be the change in 8

call update-priorities(As)

while there is available computation time
let s™** = arg max, pri(s)
perform value-propagation for V(s™); let As be the change in 8
call update-priorities(As)
pri(s™) « |V (s™) — maxs Q(s"*,a)| '

Note that the GenPS procedure does not determine how actions are selected. This issue,
which involves the problem of exploration, is orthogonal to the our main topic. Standard
approaches, such as those described in [5, 6, 7], can be used with our procedure.

This abstract description specifies neither how to update the model, nor how to update the
value function in the value-propagation steps. Both of these depend on the choices made
in the corresponding representation of the model and the value function. Moreover, it is
clear that in problems that involve a large state space, we cannot afford to recompute the
priority of every state in update-priorities. However, we can simplify this computation
by exploiting sparseness in the model and in the worst case we may resort to approximate
methods for finding the states that receive high priority after each change.

3 Explicit, State-based Representation

In this section we briefly describe the instantiation of the generalized procedure when the
rewards, values, and transition probabilities are explicitly modeled using lookup tables. In
this representation, for each state s, we store the expected reward at s, denoted by 6;(,), the
estimated value at s, denoted by 6‘;,(3), and for each action a and state £ the number of times

the execution of a at s lead to state ¢, denoted NN, , ;. From these transition counts we can

'In general, this will assign the state a new priority of 0, unless there is a self loop. In this case it
will easy to compute the new Bellman error as a by-product of the value propagation step.

