Truthfulness of Calibration Measures

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper

Authors

Nika Haghtalab, Mingda Qiao, Kunhe Yang, Eric Zhao

Abstract

We study calibration measures in a sequential prediction setup. In addition to rewarding accurate predictions (completeness) and penalizing incorrect ones (soundness), an important desideratum of calibration measures is truthfulness, a minimal condition for the forecaster not to be incentivized to exploit the system. Formally, a calibration measure is truthful if the forecaster (approximately) minimizes the expected penalty by predicting the conditional expectation of the next outcome, given the prior distribution of outcomes. We conduct a taxonomy of existing calibration measures. Perhaps surprisingly, all of them are far from being truthful. We introduce a new calibration measure termed the Subsampled Smooth Calibration Error (SSCE), which is complete and sound, and under which truthful prediction is optimal up to a constant multiplicative factor. In contrast, under existing calibration measures, there are simple distributions on which a polylogarithmic (or even zero) penalty is achievable, while truthful prediction leads to a polynomial penalty.