Learning Dictionary for Visual Attention

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental

Authors

Yingjie Liu, Xuan Liu, Hui Yu, XUAN TANG, Xian Wei

Abstract

Recently, the attention mechanism has shown outstanding competence in capturing global structure information and long-range relationships within data, thus enhancing the performance of deep vision models on various computer vision tasks. In this work, we propose a novel dictionary learning-based attention (\textit{Dic-Attn}) module, which models this issue as a decomposition and reconstruction problem with the sparsity prior, inspired by sparse coding in the human visual perception system. The proposed \textit{Dic-Attn} module decomposes the input into a dictionary and corresponding sparse representations, allowing for the disentanglement of underlying nonlinear structural information in visual data and the reconstruction of an attention embedding. By applying transformation operations in the spatial and channel domains, the module dynamically selects the dictionary's atoms and sparse representations. Finally, the updated dictionary and sparse representations capture the global contextual information and reconstruct the attention maps. The proposed \textit{Dic-Attn} module is designed with plug-and-play compatibility, allowing for integration into deep attention encoders. Our approach offers an intuitive and elegant means to exploit the discriminative information from data, promoting visual attention construction. Extensive experimental results on various computer vision tasks, e.g., image and point cloud classification, validate that our method achieves promising performance, and shows a strong competitive comparison with state-of-the-art attention methods.