Imbalanced Mixed Linear Regression

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental

Authors

Pini Zilber, Boaz Nadler

Abstract

We consider the problem of mixed linear regression (MLR), where each observed sample belongs to one of $K$ unknown linear models. In practical applications, the mixture of the $K$ models may be imbalanced with a significantly different number of samples from each model. Unfortunately, most MLR methods do not perform well in such settings. Motivated by this practical challenge, in this work we propose Mix-IRLS, a novel, simple and fast algorithm for MLR with excellent performance on both balanced and imbalanced mixtures.In contrast to popular approaches that recover the $K$ models simultaneously, Mix-IRLS does it sequentially using tools from robust regression. Empirically, beyond imbalanced mixtures, Mix-IRLS succeeds in a broad range of additional settings where other methods fail, including small sample sizes, presence of outliers, and an unknown number of models $K$. Furthermore, Mix-IRLS outperforms competing methods on several real-world datasets, in some cases by a large margin. We complement our empirical results by deriving a recovery guarantee for Mix-IRLS, which highlights its advantage on imbalanced mixtures.