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Abstract
Current image steganography techniques are mainly focused on cover-based meth-
ods, which commonly have the risk of leaking secret images and poor robustness
against degraded container images. Inspired by recent developments in diffu-
sion models, we discovered that two properties of diffusion models, the ability to
achieve translation between two images without training, and robustness to noisy
data, can be used to improve security and natural robustness in image steganogra-
phy tasks. For the choice of diffusion model, we selected Stable Diffusion, a type
of conditional diffusion model, and fully utilized the latest tools from open-source
communities, such as LoRAs and ControlNets, to improve the controllability and
diversity of container images. In summary, we propose a novel image steganog-
raphy framework, named Controllable, Robust and Secure Image Steganography
(CRoSS), which has significant advantages in controllability, robustness, and secu-
rity compared to cover-based image steganography methods. These benefits are
obtained without additional training. To our knowledge, this is the first work to
introduce diffusion models to the field of image steganography. In the experimental
section, we conducted detailed experiments to demonstrate the advantages of our
proposed CRoSS framework in controllability, robustness, and security. Code is
available at https://github.com/vvictoryuki/CRoSS.

1 Introduction

With the explosive development of digital communication and AIGC (AI-generated content), the
privacy, security, and protection of data have aroused significant concerns. As a widely studied
technique, steganography [10] aims to hide messages like audio, image, and text into the container
image in an undetected manner. In its reveal process, it is only possible for the receivers with pre-
defined revealing operations to reconstruct secret information from the container image. It has a wide
range of applications, such as copyright protection [4], digital watermarking [15], e-commerce [11],
anti-visual detection [34], spoken language understanding [12, 13] and cloud computing [76].

For image steganography, traditional methods tend to transform the secret messages in the spatial
or adaptive domains [27], such as fewer significant bits [9] or indistinguishable parts. With the
development of deep neural networks, researchers begin to use auto-encoder networks [5, 6] or
invertible neural networks (INN) [35, 26]to hide data, namely deep steganography.

The essential targets of image steganography are security, reconstruction quality, and robustness [9,
45, 77]. Since most previous methods use cover images to hide secret images, they tend to explicitly
retain some secret information as artifacts or local details in the container image, which poses a risk
of information leakage and reduces the security of transmission. Meanwhile, although previous
works can maintain well reconstruction fidelity of the revealed images, they tend to train models in a
noise-free simulation environment and can not withstand noise, compression artifacts, and non-linear
transformations in practice, which severely hampers their practical values and robustness [30, 44, 25].
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To address security and robustness concerns, researchers have shifted their focus toward coverless
steganography. This approach aims to create a container image that bears no relation to the secret
information, thereby enhancing its security. Current coverless steganography methods frequently
employ frameworks such as CycleGAN [78] and encoder-decoder models [76], leveraging the
principle of cycle consistency. However, the controllability of the container images generated by
existing coverless methods remains limited. Their container images are only randomly sampled from
the generative model and cannot be determined by the user. Moreover, existing approaches [47] tend
to only involve hiding bits into container images, ignoring the more complex hiding of secret images.
Overall, current methods, whether cover-based or coverless, have not been able to achieve good unity
in terms of security, controllability, and robustness. Thus, our focus is to propose a new framework
that can simultaneously improve existing methods in these three aspects.

Recently, research on diffusion-based generative models [22, 55, 56] has been very popular, with
various unique properties such as the ability to perform many tasks in a zero-shot manner [36, 28, 64,
63, 72, 37, 20], strong control over the generation process [16, 49, 74, 40, 19, 50], natural robustness
to noise in images [64, 28, 14, 65], and the ability to achieve image-to-image translation [75, 8, 20,
39, 57, 14, 29, 37]. We were pleasantly surprised to find that these properties perfectly match the
goals we mentioned above for image steganography: (1) Security: By utilizing the DDIM Inversion
technique [54] for diffusion-based image translation, we ensure the invertibility of the translation
process. This invertible translation process enables a coverless steganography framework, ensuring
the security of the hidden image. (2) Controllability: The powerful control capabilities of conditional
diffusion models make the container image highly controllable, and its visual quality is guaranteed
by the generative prior of the diffusion model; (3) Robustness: Diffusion models are essentially
Gaussian denoisers and have natural robustness to noise and perturbations. Even if the container
image is degraded during transmission, we can still reveal the main content of the secret image.

We believe that the fusion of diffusion models and image steganography is not simply a matter of
mechanically combining them, but rather an elegant and instructive integration that takes into account
the real concerns of image steganography. Based on these ideas, we propose the Controllable, Robust
and Secure Image Steganography (CRoSS) framework, a new image steganography framework that
aims to simultaneously achieve gains in security, controllability, and robustness.

Our contributions can be summarized as follows:

• We identify the limitations of existing image steganography methods and propose a unified goal of
achieving security, controllability, and robustness. We also demonstrate that the diffusion model
can seamlessly integrate with image steganography to achieve these goals using diffusion-based
invertible image translation technique without requiring any additional training.

• We propose a new image steganography framework: Controllable, Robust and Secure Image
Steganography (CRoSS). To the best of our knowledge, this is the first attempt to apply the
diffusion model to the field of image steganography and gain better performance.

• We leveraged the progress of the rapidly growing Stable Diffusion community to propose variants
of CRoSS using prompts, LoRAs, and ControlNets, enhancing its controllability and diversity.

• We conducted comprehensive experiments focusing on the three targets of security, controllability,
and robustness, demonstrating the advantages of CRoSS compared to existing methods.

2 Related Work

2.1 Steganography Methods

Cover-based Image Steganography. Unlike cryptography, steganography aims to hide secret
data in a host to produce an information container. For image steganography, a cover image is
required to hide the secret image in it [5]. Traditionally, spatial-based [24, 41, 43, 46] methods
utilize the Least Significant Bits (LSB), pixel value differencing (PVD) [43], histogram shifting [60],
multiple bit-planes [41] and palettes [24, 42] to hide images, which may arise statistical suspicion
and are vulnerable to steganalysis methods. Adaptive methods [45, 31] decompose the steganography
into embedding distortion minimization and data coding, which is indistinguishable by appearance
but limited in capacity. Various transform-based schemes [10, 27] including JSteg [46] and DCT
steganography [21] also fail to offer high payload capacity. Recently, various deep learning-based
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schemes have been proposed to solve image steganography. Baluja [5] proposed the first deep-
learning method to hide a full-size image into another image. Generative adversarial networks
(GANs) [53] are introduced to synthesize container images. Probability map methods focus on
generating various cost functions satisfying minimal-distortion embedding [45, 59]. [69] proposes
a generator based on U-Net. [58] presents an adversarial scheme under distortion minimization.
Three-player game methods like SteganoGAN [73] and HiDDeN [77] learn information embedding
and recovery by auto-encoder architecture to adversarially resist steganalysis. Recent attempts [66] to
introduce invertible neural networks (INN) into low-level inverse problems like denoising, rescaling,
and colorization show impressive potential over auto-encoder, GAN [3], and other learning-based
architectures. Recently, [35, 26] proposed designing the steganography model as an invertible neural
network (INN) [17, 18] to perform image hiding and recovering with a single INN model.

Coverless Steganography. Coverless steganography is an emerging technique in the field of
information hiding, which aims to embed secret information within a medium without modifying the
cover object [47]. Unlike traditional steganography methods that require a cover medium (e.g., an
image or audio file) to be altered for hiding information, coverless steganography seeks to achieve
secure communication without introducing any changes to the cover object [33]. This makes it more
challenging for adversaries to detect the presence of hidden data, as there are no observable changes
in the medium’s properties [38]. To the best of our knowledge, existing coverless steganography
methods [34] still focus on hiding bits into container images, and few explorations involve hiding
images without resorting to cover images.

2.2 Diffusion Models

Diffusion models [22, 55, 56] are a type of generative model that is trained to learn the target image
distribution from a noise distribution. Recently, due to their powerful generative capabilities, diffusion
models have been widely used in various image applications, including image generation [16, 48,
51, 49], restoration [52, 28, 64], translation [14, 29, 37, 75], and more. Large-scale diffusion model
communities have also emerged on the Internet, with the aim of promoting the development of
AIGC(AI-generated content)-related fields by applying the latest advanced techniques.

In these communities, the Stable Diffusion [49] community is currently one of the most popular and
thriving ones, with a large number of open-source tools available for free, including model checkpoints
finetuned on various specialized datasets. Additionally, various LoRAs [23] and ControlNets [74] are
available in these communities for efficient control over the results generated by Stable Diffusion.
LoRAs achieve control by efficiently modifying some network parameters in a low-rank way, while
ControlNets introduce an additional network to modify the intermediate features of Stable Diffusion
for control. These mentioned recent developments have enhanced our CRoSS framework.

3 Method

3.1 Definition of Image Steganography
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Figure 1: Illustration used to show the
definition of image steganography.

Before introducing our specific method, we first define the
image steganography task as consisting of three images
and two processes (as shown in Fig. 1): the three images
refer to the secret image xsec, container image xcont, and
revealed image xrev , while the two processes are the hide
process and reveal process. The secret image xsec is the
image we want to hide and is hidden in the container
image xcont through the hide process. After transmission
over the Internet, the container image xcont may become
degraded, resulting in a degraded container image x′

cont,
from which we extract the revealed image xrev through
the reveal process. Our goal is to make our proposed framework have the following properties: (1)
Security: even if the container image xcont is intercepted by other receivers, the hidden secret image
xsec cannot be leaked. (2) Controllability: the content in the container image xcont can be controlled
by the user, and its visual quality is high. (3) Robustness: the reveal process can still generate
semantically consistent results (xrev ≈ xsec) even if there is deviation in the x′

cont compared to the
xcont (x′

cont = d(xcont), d(·) denotes the degradation process). According to the above definition,
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Figure 2: In part (a), Conditional diffusion models can be used with different conditions to perform
image translation. In this example, we use two different prompts (“cat" and “tiger") to translate a cat
image into a tiger image. However, a critical challenge for coverless image steganography is whether
we can reveal the original image from the translated image. The answer is yes, and we can use DDIM
Inversion (shown in part (b)) to achieve dual-direction translation between the image distribution and
noise distribution, allowing for invertible image translation.

we can consider the hide process as a translation between the secret image xsec and the container
image xcont, and the reveal process as the inverse process of the hide process. In Sec. 3.2, we will
introduce how to use diffusion models to implement these ideas, and in Sec. 3.3, we will provide a
detailed description of our proposed framework CRoSS for coverless image steganography.

3.2 Invertible Image Translation using Diffusion Model

Diffusion Model Defined by DDIM. A complete diffusion model process consists of two stages:
the forward phase adds noise to a clean image, while the backward sampling phase denoises it step
by step. In DDIM [54], the formula for the forward process is given by:

xt =
√
αtxt−1 +

√
1− αtϵ, ϵ ∼ N (0, I), (1)

where xt denotes the noisy image in the t-th step, ϵ denotes the randomly sampled Gaussian noise,
αt is a predefined parameter and the range of time step t is [1, T ]. The formula of DDIM for the
backward sampling process is given by:

xs =
√
ᾱsfθ(xt, t) +

√
1− ᾱs − σ2

sϵθ(xt, t) + σsϵ, fθ(xt, t) =
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt
, (2)

where ϵ ∼ N (0, I) is a randomly sampled Gaussian noise with σ2
s as the noise variance, fθ(·, t) is a

denoising function based on the pre-trained noise estimator ϵθ(·, t), and ᾱt =
∏t

i=1 αi. DDIM does
not require the two steps in its sampling formula to be adjacent (i.e., t = s+ 1). Therefore, s and
t can be any two steps that satisfy s < t. This makes DDIM a popular algorithm for accelerating
sampling. Furthermore, if σs in Eq.2 is set to 0, the DDIM sampling process becomes deterministic.
In this case, the sampling result is solely determined by the initial value xT , which can be considered
as a latent code. The sampling process can also be equivalently described as solving an Ordinary
Differential Equation (ODE) using an ODE solver [54]. In our work, we choose deterministic DDIM
to implement the diffusion model and use the following formula:

x0 = ODESolve(xT ; ϵθ, T, 0) (3)

to represent the process of sampling from xT to x0 using a pretrained noise estimator ϵθ.

Image Translation using Diffusion Model. A large number of image translation methods [75, 8,
20, 39, 57, 14, 29, 37] based on diffusion models have been proposed. In our method, we will adopt
a simple approach. First, we assume that the diffusion models used in our work are all conditional
diffusion models that support condition c as input to control the generated results. Taking the example
shown in Fig. 2 (a), suppose we want to transform an image of a cat into an image of a tiger. We add
noise to the cat image using the forward process (Eq. 1) to obtain the intermediate noise, and then
control the backward sampling process (Eq. 2) from noise by inputting a condition (prompt=“tiger”),
resulting in a new tiger image. In general, if the sampling condition is set to c, our conditional
sampling process can be expressed based on Eq. 3 as follows:

x0 = ODESolve(xT ; ϵθ, c, T, 0). (4)

For image translation, there are two properties that need to be considered: the structural consistency
of the two images before and after the translation, and whether the translation process is invertible.
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Figure 3: Our coverless image steganography framework CRoSS. The diffusion model we choose is
a conditional diffusion model, which supports conditional inputs to control the generation results. We
choose the deterministic DDIM as the sampling strategy and use the two different conditions (kpri

and kpub) given to the model as the private key and the public key.

Algorithm 1 The Hide Process of CRoSS.
Input: The secret image xsec which will be hidden, a pre-trained conditional diffusion model with
noise estimator ϵθ , the number T of time steps for sampling and two different conditions kpri and
kpub which serve as the private and public keys.
Output: The container image xcont used to hide the secret image xsec.
xnoise = ODESolve(xsec; ϵθ,kpri, 0, T )
xcont = ODESolve(xnoise; ϵθ,kpub, T, 0)
return xcont

Structural consistency is crucial for most applications related to image translation, but for coverless
image steganography, ensuring the invertibility of the translation process is the more important goal.
To achieve invertible image translation, we utilize DDIM Inversion based on deterministic DDIM.

DDIM Inversion Makes an Invertible Image Translation. DDIM Inversion (shown in Fig. 2
(b)), as the name implies, refers to the process of using DDIM to achieve the conversion from an
image to a latent noise and back to the original image. The idea is based on the approximation of
forward and backward differentials in solving ordinary differential equations [54, 29]. Intuitively, in
the case of deterministic DDIM, it allows s and t in Eq. 2 to be any two steps (i.e., allowing s < t
and s > t). When s < t, Eq. 2 performs the backward process, and when s > t, Eq. 2 performs the
forward process. As the trajectories of forward and backward processes are similar, the input and
output images are very close, and the intermediate noise xT can be considered as the latent variable
of the inversion. In our work, we use the following formulas:

xT = ODESolve(x0; ϵθ, c, 0, T ), x′
0 = ODESolve(xT ; ϵθ, c, T, 0), (5)

to represent the DDIM Inversion process from the original image x0 to the latent code xT and from
the latent code xT back to the original image x0 (the output image is denoted as x′

0 and x′
0 ≈ x0).

Based on DDIM Inversion, we have achieved the invertible relationship between images and latent
noises. As long as we use deterministic DDIM to construct the image translation framework, the
entire framework can achieve invertibility with two DDIM Inversion loops. It is the basis of our
coverless image steganography framework, which will be described in detail in the next subsection.

3.3 The Coverless Image Steganography Framework CRoSS

Our basic framework CRoSS is based on a conditional diffusion model, whose noise estimator is
represented by ϵθ, and two different conditions that serve as inputs to the diffusion model. In our
work, these two conditions can serve as the private key and public key (denoted as kpri and kpub), as
shown in Fig.3, with detailed workflow described in Algo.1 and Algo. 2. We will introduce the entire
CRoSS framework in two parts: the hide process and the reveal process.

The Process of Hide Stage. In the hide stage, we attempt to perform translation between the
secret image xsec and the container image xcont using the forward and backward processes of
deterministic DDIM. In order to make the images before and after the translation different, we use
the pre-trained conditional diffusion model with different conditions in the forward and backward
processes respectively. These two different conditions also serve as private and public keys in the
CRoSS framework. Specifically, the private key kpri is used for the forward process, while the
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Algorithm 2 The Reveal Process of CRoSS.
Input: The container image x′

cont that has been transmitted over the Internet (may be degraded
from xcont), the pre-trained conditional diffusion model with noise estimator ϵθ , the number T of
time steps for sampling, the private key kpri and public key kpub.
Output: The revealed image xrev .
x′
noise = ODESolve(x′

cont; ϵθ,kpub, 0, T )
xrev = ODESolve(x′

noise; ϵθ,kpri, T, 0)
return xrev

Reveal Backward Reveal Forward Social Media
Internet

Transmission

C
an

di
da

te
 R

ev
ea

le
d 

Im
ag

es

Scenario#2
Guessed Public Key

Scenario#1
Possible Private Keys

“What is the secret 
image behind the 

container image? I 
just see a tiger in the 

container image.
Maybe we can take 

this word as public key 
to try.”

Receiver Receiver

“I guess the private key 
may be something related 
to animals, like a cat, lion, 
leopard, ... . I try to use 

these words as the private 
keys to generate some 

condidates, but I do not 
know which one is true:(”

Receiver

“I got this from social media and there 
are no evidences for me to judge if this 

image is a container. The visual quality of 
this image is high and I can not find any 
difference between this image and other 

natural images.”

Scenario#3
Security for Avoiding Detection

Transmitted Container Image

“cat”

“lion”

“leopard”

Figure 4: Further explanation of the CRoSS framework. We simulated the possible problems that a
receiver may encounter in three different scenarios during the reveal process.

public key kpub is used for the backward process. After getting the container image xcont, it will be
transmitted over the Internet and publicly accessible to all potential receivers.

The Roles of the Private and Public Keys in Our CRoSS Framework. In CRoSS, we found
that these given conditions can act as keys in practical use. The private key is used to describe
the content in the secret image, while the public key is used to control the content in the container
image. For the public key, it is associated with the content in the container image, so even if it is
not manually transmitted over the network, the receiver can guess it based on the received container
image (described in Scenario#2 of Fig. 4). For the private key, it determines whether the receiver can
successfully reveal the original image, so it cannot be transmitted over public channels.

The Process of Reveal Stage. In the reveal stage, assuming that the container image has been
transmitted over the Internet and may have been damaged as x′

cont, the receiver needs to reveal it
back to the secret image through the same forward and backward process using the same conditional
diffusion model with corresponding keys. Throughout the entire coverless image steganography
process, we do not train or fine-tune the diffusion models specifically for image steganography tasks
but rely on the inherent invertible image translation guaranteed by the DDIM Inversion.

The Security Guaranteed by CRoSS. Some questions about security may be raised, such as:
What if the private key is guessed by the receivers? Does the container image imply the possible
hidden secret image? We clarify these questions from two aspects: (1) Since the revealed image is
generated by the diffusion model, the visual quality of the revealed image is relatively high regardless
of whether the input private key is correct or not. The receiver may guess the private key by exhaustive
method, but it is impossible to judge which revealed image is the true secret image from a pile of
candidate revealed images (described in Scenario#1 of Fig. 4). (2) Since the container image is
also generated by the diffusion model, its visual quality is guaranteed by the generative prior of the
diffusion model. Moreover, unlike cover-based methods that explicitly store clues in the container
image, the container image in CRoSS does not contain any clues that can be detected or used to extract
the secret image. Therefore, it is hard for the receiver to discover that the container image hides other
images or to reveal the secret image using some detection method (described in Scenario#3 of Fig. 4).

Various Variants for Public and Private Keys. Our proposed CRoSS relies on pre-trained con-
ditional diffusion models with different conditions kpub,kpri and these conditions serve as keys in
the CRoSS framework. In practical applications, we can distinguish different types of conditions of
diffusion models in various ways. Here are some examples: (1) Prompts: using the same checkpoint

6



Figure 5: Deep steganalysis results by the latest SID [61]. As the number of leaked samples increases,
methods whose detection accuracy curves grow more slowly and approach 50% exhibit higher
security. The right is the recall curve of different methods under the StegExpose [7] detector. The
closer the area enclosed by the curve and the coordinate axis is to 0.5, the closer the method is to the
ideal evasion of the detector.

of text-to-image diffusion models like Stable Diffusion [49] but different prompts as input condi-
tions; (2) LoRAs [23]: using the same checkpoint initialization, but loading different LoRAs; (3)
ControlNets [74]: loading the same checkpoint but using ControlNet with different conditions.

4 Experiment

4.1 Implementation Details

Experimental Settings. In our experiment, we chose Stable Diffusion [49] v1.5 as the conditional
diffusion model, and we used the deterministic DDIM [54] sampling algorithm. Both the forward
and backward processes consisted of 50 steps. To achieve invertible image translation, we set the
guidance scale of Stable Diffusion to 1. For the given conditions, which serve as the private and
public keys, we had three options: prompts, conditions for ControlNets [74] (depth maps, scribbles,
segmentation maps), and LoRAs [23]. All experiments were conducted on a GeForce RTX 3090
GPU card, and our method did not require any additional training or fine-tuning for the diffusion
model. The methods we compared include RIIS [68], HiNet [26], Baluja [6], and ISN [35].

Data Preparation. To perform a quantitative and qualitative analysis of our method, we collect a
benchmark with a total of 260 images and generate corresponding prompt keys specifically tailored
for the coverless image steganography, dubbed Stego260. We categorize the dataset into three classes,
namely humans, animals, and general objects (such as architecture, plants, food, furniture, etc.). The
images in the dataset are sourced from publicly available datasets [1, 2] and Google search engines.
For generating prompt keys, we utilize BLIP [32] to generate private keys and employ ChatGPT or
artificial adjustment to perform semantic modifications and produce public keys in batches. More
details about the dataset can be found in the supplementary material.

4.2 Property Study#1: Security

Methods NIQE ↓ |Detection Accuracy - 50| ↓
XuNet [67] YedroudjNet [70] KeNet [71]

Baluja [6] 3.43±0.08 45.18±1.69 43.12±2.18 46.88±2.37
ISN [35] 2.87±0.02 5.14±0.44 3.01±0.29 8.62±1.19
HiNet [26] 2.94±0.02 5.29±0.44 3.12±0.36 8.33±1.22
RIIS [68] 3.13±0.05 0.73±0.13 0.24±0.08 4.88±1.15
CRoSS (ours) 3.04 1.32 0.18 2.11

Table 1: Security analysis. NIQE indicates the vi-
sual quality of container images, lower is better.
The closer the detection rate of a method approxi-
mates 50%, the more secure the method is consid-
ered, as it suggests its output is indistinguishable
from random chance. The best results are red and
the second-best results are blue.

In Fig. 5, the recent learning-based steganalysis
method Size-Independent-Detector (SID) [61]
is retrained with leaked samples from testing
results of various methods on Stego260. The
detection accuracy of CRoSS increases more
gradually as the number of leaked samples rises,
compared to other methods. The recall curves
on the right also reveal the lower detection ac-
curacy of our CRoSS, indicating superior anti-
steganalysis performance.

Our security encompasses two aspects: imper-
ceptibility in visual quality against human suspi-
cion and resilience against steganalysis attacks.
NIQE is a no-reference image quality assessment (IQA) model to measure the naturalness and visual
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Prompt1: a young cute chinese girl with long hair
Prompt2: a baby with long hair

Prompt1: a koala is sitting on a branch 
Prompt2: a baby raccoon cub is walking on a branch

Prompt1: a grey chair in the living room 
Prompt2: a grey sofa in the living room

Prompt1: Sydney Opera House 
Prompt2: a boat

Secret Container Revealed

Prompt1: leaning tower of pisa
Prompt2: a lighthouse with a red flag

Prompt1: a baby badger cub is walking through the grass
Prompt2: a baby raccoon cub is walking through the grass

Prompt1: a young girl with blond hair
Prompt2: a wrinkled elderly woman with white hair

Prompt1: a multi-layer hamburger
Prompt2: a three-layer sandwich

Secret Container Revealed

Prompt1: a cute rabbit
Prompt2: a cute cat

Prompt1: Eiffel Tower under the blue sky
Prompt2: a tree under the blue sky

Prompt1: Obama is giving a speech
Prompt2: Biden is giving a speech

Prompt1: tomatoes hanging on tree
Prompt2: green apples hanging on tree

Secret Container Revealed

Figure 6: Visual results of the proposed CRoSS controlled by different prompts. The container
images are realistic and the revealed images have well semantic consistency with the secret images.

Secret Container Revealed Secret Container RevealedSecret Container Revealed
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Figure 7: Visual results of our CRoSS controlled by different ControlNets and LoRAs. Depth maps,
scribbles, and segmentation maps are presented in the lower right corner of the images.

security without any reference image or human feedback. In Tab. 1, the lower the NIQE score, the
less likely it is for the human eye to identify the image as a potentially generated container for hiding
secret information. Our NIQE is close to those of other methods, as well as the original input image
(2.85), making it difficult to discern with human suspicion. Anti-analysis security is evaluated by
three steganalysis models XuNet[67], YedroudjNet[70], and KeNet[71], for which lower detection
accuracy denotes higher security. Our CRoSS demonstrates the highest or near-highest resistance
against various steganalysis methods.

4.3 Property Study#2: Controllability

To verify the controllability and flexibility of the proposed CRoSS, various types of private and public
keys such as prompts, ControlNets, and LoRAs † are incorporated in our framework. As illustrated in
Fig. 6, our framework is capable of effectively hiding the secret images in the container images based
on the user-provided “Prompt2” without noticeable artifacts or unrealistic image details. The container
image allows for the seamless modification of a person’s identity information, facial attributes, as

†The last row of Fig. 7 are generated via LoRAs downloaded from https://civitai.com/.
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Figure 8: Visual comparisons of our CRoSS and other methods [68, 26] under two real-world
degradations, namely “WeChat” and “Shoot”. Obviously, our method can reconstruct the content of
secret images, while other methods exhibit significant color distortion or have completely failed.

Methods clean Gaussian noise Gaussian denoiser [62] JPEG compression JPEG enhancer [62]
σ = 10 σ = 20 σ = 30 σ = 10 σ = 20 σ = 30 Q = 20 Q = 40 Q = 80 Q = 20 Q = 40 Q = 80

Baluja [6] 34.24 10.30 7.54 6.92 7.97 6.10 5.49 6.59 8.33 11.92 5.21 6.98 9.88
ISN [35] 41.83 12.75 10.98 9.93 11.94 9.44 6.65 7.15 9.69 13.44 5.88 8.08 11.63
HiNet [26] 42.98 12.91 11.54 10.23 11.87 9.32 6.87 7.03 9.78 13.23 5.59 8.21 11.88
RIIS [68] 43.78 26.03 18.89 15.85 20.89 15.97 13.92 22.03 25.41 27.02 13.88 16.74 20.13
CRoSS (ours) 23.79 21.89 20.19 18.77 21.39 21.24 21.02 21.74 22.74 23.51 20.60 21.22 21.19

Table 2: PSNR(dB) results of the proposed CRoSS and other methods under different levels of
degradations. The proposed CRoSS can achieve superior data fidelity in most settings. The best
results are red and the second-best results are blue.

well as species of animals. The concepts of these two prompts can also differ significantly such as
the Eiffel Tower and a tree, thereby enhancing the concealment capability and stealthiness of the
container images. Meanwhile, the revealed image extracted with “Prompt1” exhibits well fidelity by
accurately preserving the semantic information of secret images. Besides prompts, our CRoSS also
supports the utilization of various other control conditions as keys, such as depth maps, scribbles, and
segmentation maps. As depicted in Fig. 7, our methods can effectively hide and reveal the semantic
information of the secret image without significantly compromising the overall visual quality or
arousing suspicion. Our CRoSS can also adopt different LoRAs as keys, which is conducive to
personalized image steganography.

4.4 Property Study#3: Robustness

Simulation Degradation. To validate the robustness of our method, we conduct experiments on
simulation degradation such as Gaussian noise and JPEG compression. As reported in Tab. 2, our
CRoSS performs excellent adaptability to various levels of degradation with minimal performance
decrease, while other methods suffer significant drops in fidelity (over 20dB in PSNR). Meanwhile,
our method achieves the best PSNR at σ = 20 and σ = 30. Furthermore, when we perform nonlinear
image enhancement [62] on the degraded container images, all other methods have deteriorations but
our CRoSS can still maintain good performance and achieve improvements in the Gaussian noise
degradation. Noting that RIIS [68] is trained exclusively on degraded data, but our CRoSS is naturally
resistant to various degradations in a zero-shot manner and outperforms RIIS in most scenarios.

Real-World Degradation. We further choose two real-world degradations including “WeChat” and
“Shoot”. Specifically, we send and receive container images via the pipeline of WeChat to implement
network transmission. Simultaneously, we utilize the mobile phone to capture the container images
on the screen and then simply crop and warp them. Obviously, as shown in Fig. 8, all other methods
have completely failed or present severe color distortion subjected to these two extremely complex
degradations, yet our method can still reveal the approximate content of the secret images and
maintain well semantic consistency, which proves the superiority of our method.

5 Conclusion

We propose a coverless image steganography framework named CRoSS (Controllable, Robust, and
Secure Image Steganography) based on diffusion models. This framework leverages the unique

9



properties of diffusion models and demonstrates superior performance in terms of security, control-
lability, and robustness compared to existing methods. To the best of our knowledge, CRoSS is
the first attempt to integrate diffusion models into the field of image steganography. In the future,
diffusion-based image steganography techniques will continue to evolve, expanding their capacity
and improving fidelity while maintaining their existing advantages.
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