
A Training Algorithm427

The training algorithm for fair graph distillation is shown in Algorithm 1.

Algorithm 1 Fair Graph Distillation

Input: Training graph data G = {X,A,S,Y }, hyperparameters ↵, temperature �, number of
alternative optimization step Talt, distilled label Y 0.
Initialize X 0 based on real attributes, synthesizer model �, and GNNs model ✓.
for t = 1 to Talt do

1. Train GNNs model using distilled graph G0
t

and Equation (15) to obtain GNN✓t .
2. Given GNNs model GNN✓t , calculate the gradient distance D

�
r✓L(G),r✓L(G0

t
)
�

over the
real graph G and distilled graph G0

t
.

3. Calculate coherence loss based on GNNs model GNN✓t , real graph G and distilled graph G0
t
.

4. Train synthesizer model using prediction loss as Equation (16).
end for
Output: The fair distilled graph G0 = {A0

,X 0
,Y 0}.

428

B Proof of Theorem 3.4429

We consider GNNs model to learn node presentation zi in the real graph G and then followed a linear430

classifier W = [w0, · · · ,wC�1] and softmax layer, where wj is the weight vector connected to the431

j-tj output neuron. We first focus on the relation between the latent representation and the gradient432

of the linear classification layer. It is easy to obtain the cross-entropy loss Ji (J 0
i
) for i-th node with433

label yi in real graph G (distilled graph G0) as follows:434

Ji = � log
exp(w>

yi
· zi)P

k
exp(w>

k
· zi)

, (17)

Then we define gradient over weight vector as gi,j = @Ji
@wj

and g0
i,j

= @J
0
i

@wj
in the real and distilled435

graph. If j = yi, we can obtain436

gi,yi = �
P

k
exp(w>

k
· zi)

exp(w>
yi
· zi)

·
exp(w>

yi
· zi)

P
k
exp(w>

k
· zi)� exp2(w>

yi
· zi)

�P
k
exp(w>

k
· zi)

�2 · zi

= �zi +
exp(w>

yi
· zi)P

k
exp(w>

k
· zi)

· zi, (18)

Similarly, for j 6= y, we have437

gi,j =
exp(w>

yi
· zi)P

k
exp(w>

k
· zi)

· zi, (19)

In other words, the gradient of the loss for i-th node with label yi with respect to the weight vector438

connected to the j-th output neuron is given by439

gi,j =
exp(w>

yi
· zi)P

k
exp(w>

k
· zi)

· zi � j=yizi. (20)

Based on Assumption 3.1, each model parameter in the last softmax layer satisfies the same distribu-440

tion. In other words, the expectation of all predictions are the same, i.e.,441

EP✓

h exp(w>
0 · zi)P

k
exp(w>

k
· zi)

i
= · · · = EP✓

h exp(w>
C�1 · zi)P

k
exp(w>

k
· zi)

i
. (21)
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Note that the gradient calculation is based on backpropagation, the gradient for the last linear442

classification layer is quite critical for the gradient of other layers. Hence we consider the gradient of443

the last linear classification layer in the real graph, shown by444

E✓⇠P✓

⇥
rwjL(G)

⇤
= E✓⇠P✓

⇥ 1
N

NX

i=1

gi,j
⇤

=
1

NC

NX

i=1

zi �
1

N

X

{i:yi=j}

zi, (22)

Similarly, we have the gradient of the last linear classification layer in the distilled graph as follows:445

E✓⇠P✓

⇥
rwjL(G0)

⇤
= E✓⇠P✓

⇥ 1

N 0

NX

i=1

g0
i,j

⇤

=
1

N 0C

N
0X

i=1

z0
i
� 1

N 0

X

{i:y0
i=j}

z0
i
, (23)

Under assumption 3.2, it is easy to know that the optimal solution to minimizing the objective446

minG0 E✓⇠PW

⇥
||rWL(G)�rWL(G0)||2

⇤
satisfy rWL(G) = rWL(G0). Since the distilled label447

is sampling to keep class label probability, we have |{i:y0
i=j}|
N 0 = |{i:yi=j}|

N
for any class index i.448

Therefore, based on Equations (22) and (23), we have the optimal distilled graph satisfy449

1

N

NX

i=1

zi =
1

N 0

N
0X

i=1

z0
i
. (24)

C Proof of Ridge Regression450

Define objective function J = �kz0 �Z>
s
qk22 + kqk22, it is easy to obtain451

@J

@q
= �2�Zs

�
z0 �Z>

s
q
�
+ 2q = 0 (25)

Therefore, the optimal q⇤ = �(I + �ZsZ>
s
)�1Zsz0. Therefore, the projection of representation z0452

in the complement space of sensitive group Zs is given by453

z0 �Z>
s
q⇤ = z0 � �Z>

s
(I + �ZsZ

>
s
)�1Zsz

0 (26)

D More Results on Consistent Span Space454

We conduct experiments to measure the distance between span(Z) and span(Z 0) using principle455

angles between subspaces and emperically shows that span(Z) ⇡ span(Z 0) in the real dataset.456

The concept of principal angle is used in linear algebra to measure the similarity between two457

subspaces of a vector space. It helps quantify how close or far apart these subspaces are. Given458

subspace, L,M ✓ Rn, with dimL = l � dimM = m, there are m principal angles between L and459

M denoted as 0  ✓1  ✓2  · · ·  ✓m  ⇡

2 between L and M are recursively defined, where460

cos (✓i) := min

⇢
hx,y >

kxkkyk | x 2 L,y 2 M,x ? xk,y ? yk, k = 1, · · · , i� 1

�
. (27)

Notably, when the two subspaces are aligned, the principal angels are close to 0. We report the461

average principal angles of span(Z) and span(Z 0) on all datasets as following:462

• Pokec-z: 1.08⇥ 10�6463

• Pokec-n: 1.03⇥ 10�6464

• German: 4.84⇥ 10�7465
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• Credit: 2.57⇥ 10�7466

• Recidivism: 3.87⇥ 10�7467

In the experiments, the principal angles of span(Z) and span(Z 0) on all dataset are nearly 0. This468

indicates that the distance between space span(Z 0) and space span(Z) are quite small in practice.469

Additionally, we would like to mention that [1] provides the rigorous proof of z
0 2 span(Z)

for distribution matching under several assumptions (although we can not prove it under gradient
matching setting). According to formulas 21 from [1], it is assumed that (1) the **linear extractor**
 ✓ : Rd ! Rk such that k < d,✓ = [✓i,j ] 2 Rk⇥d, ✓i,j

iid⇠ N (0, 1) and for an input z,  ✓(x) = ✓z.
When using distribution match method for data condensation, we have:

@L

@z0
i

=
@E✓||d||2

@z0
i

= � 2

|N 0|

0

@ 1

N

NX

j=1

zj �
1

N 0

N
0X

j=1

z0
j

1

A
T

· E[✓t✓]

where d := ✓

⇣
1
N

P
N

j=1 zj �
1
N 0

P
N

0

j=1 z
0
j

⌘
, E

⇥
✓>✓

⇤
= kId by definition of470

✓, and Id is the identity matrix of Rd. the projection components of span(Z)? remain zero471

throughout the optimization process of DM. And we use zi to initialize z0
i
, thus z0 2 span(Z).472

However, in the implementation we use gradient matching instead of distribution matching.473

Table 3: Statistical Information on Datasets
Dataset # Nodes # Attributes # Edges Avg. degree Sens Label
Pokec-n 6,185 59 21,844 7.06 Region Working field
Pokec-z 7,659 59 29,476 7.70 Region Working field
German 1,000 27 21,242 44.50 Gender Credit status
Credit 30,000 13 1,436,858 95.80 Age Future default

Recidivism 18,876 18 321,308 34.00 Race Bail decision

E Preliminary Motivation474

We have added experiments comparing the fairness performance of various fair GNNs trained on475

synthetic and real graph data. Specifically, we report the results (using demographic parity (DP), equal476

opportunity (EO), and individual unfairness (IND) Song et al. [2022] as metrics) with EDITS Dong477

et al. [2022], FairGNN Dai and Wang [2021], InFoRM Kang et al. [2020], and REDRESS Dong478

et al. [2021] on five datasets in our paper. EDITS is a pre-processing debiasing method, FairGNN479

is an in-processing debiasing method, and InFoRM and REDRESS focus on individual fairness.480

We encountered out-of-memory (OOM) issues when implementing GUIDE and REDRESS on an481

NVIDIA GeForce RTX A5000 (24GB GPU memory), so we used InFoRM as the baseline. Due to482

the extensive training time required for REDRESS, we only report results on the German dataset483

for REDRESS. We use demographic parity (DP), equal opportunity (EO), and individual unfairness484

(IND) as metrics.Table 4 demonstrates the result. From Table 4, we can see that in terms of the group485

fairness metrics (DP, EO), the fairness problem becomes uniformly worse on the Credit, German,486

and Pokecn datasets for all debiasing methods. For the Recidivism dataset, the distilled graph shows487

fewer fairness issues (lower DP or EO), especially for the EDITS method. This may result from the488

drop in utility of the model trained on the distilled graph (AUC is too low). As shown in Figure 4 of489

our paper, FGD can achieve a better performance-fairness trade-off compared to the baselines.490

F Dataset Statistics491

Pokec. The Pokec dataset consists of millions of anonymized user profiles from Slovakia’s most492

popular social network in 2012, with information such as gender, age, hobbies, interests, education,493

and working field. The dataset was sampled into Pokec-z and Pokec-n based on user province, with494

region as the sensitive attribute. The task is to predict user working field.495
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Table 4: Utility and group fairness comparison between real graph and distilled graph with various
debias method. Bold value indicates worse fairness performance.

Recidivism Credit German Pokecn Pokecz
Real Distillated Real Distillated Real Distillated Real Distillated Real Distillated

EDITS
AUC↑ 0.971 0.658 0.740 0.704 0.668 0.506 OOM OOM OOM OOM

DP↓ 0.067 0.005 0.027 0.063 0.009 0.024 OOM OOM OOM OOM
EO↓ 0.038 0.011 0.018 0.028 0.008 0.030 OOM OOM OOM OOM

FairGNN
AUC↑ 0.977 0.788 0.759 0.720 0.742 0.645 0.782 0.676 0.784 0.723

DP↓ 0.065 0.046 0.062 0.123 0.010 0.013 0.005 0.044 0.042 0.037
EO↓ 0.037 0.046 0.037 0.091 0.001 0.011 0.006 0.062 0.051 0.038

InFoRM

AUC↑ 0.906 0.708 0.741 0.717 0.642 0.538 0.743 0.644 0.751 0.708
DP↓ 0.011 0.118 0.004 0.174 0.085 0.018 0.009 0.009 0.020 0.048
EO↓ 0.024 0.092 0.001 0.135 0.153 0.017 0.013 0.015 0.018 0.038

IND↓ 8098 3596022 2699 338149 4360 24888 6466 272013 6828 199853

REDRESS

AUC↑ OOM OOM OOM OOM 0.719 0.483 OOM OOM OOM OOM
DP↓ OOM OOM OOM OOM 0.005 0.043 OOM OOM OOM OOM
EO↓ OOM OOM OOM OOM 0.010 0.073 OOM OOM OOM OOM

IND↓ OOM OOM OOM OOM 9728 186366 OOM OOM OOM OOM

Table 5: Parameter study of ↵. All the value is in scale of ⇥102.
↵ AUC �DP �EO Bias

0.04 74.75 0.84 0.88 0.19
0.5 69.42 0.66 0.43 0.15
0.6 69.37 0.58 0.16 0.14
1.0 65.35 0.00 0.00 0.11

German. The German Graph credit dataset has 1,000 client records with attributes like Gender and496

LoanAmount, used to classify individuals as good or bad credit risks. The similarity between node497

attributes is calculated using Minkowski distance and nodes are connected if the similarity is 80% of498

the maximum similarity.499

Credit. Credit dataset, consisting of 30,000 individuals with features such as education, credit500

history, age, and derived spending and payment patterns. The similarity between two node attributes501

is calculated using Minkowski distance as the similarity measure and the credit defaulter graph502

network is constructed by connecting nodes with a similarity of 70% of the maximum similarity503

between all nodes.504

Recidivism. The US state court bail outcome dataset (1990-2009) contains 18,876 defendant records505

with past criminal records, demographic attributes, etc. The similarity between node attributes is506

calculated using Minkowski distance and nodes are connected if the similarity is 60% of the maximum507

similarity.508

G More Experimental Details509

G.1 Parameter Study510

Here we aim to study the sensitivity of FGD w.r.t. hyper-parameters. Specifically, we show the511

parameter study of ↵ on Recidivism dataset. Here ↵ controls the intensity to regularize the coherence512

bias of the distilled small graph. The results in Table 5 indicate that ↵ can control the debiasing and513

utility performance of the distilled small graph.514

G.2 Implementation Details515

Synthesizer training. We adopt Adam optimizer for synthesizer training with 0.0002 learning rate.516

MLP� consists of 3 linear layer with 128 hidden dimension. The outer loop number is 16 while the517

inner loop is 4 for each epoch. For each experiment, we train with a maximum of 1200 epochs and 3518

independent runs. The temperature parameter � is set to 10. X 0 and � are optimized alternatively.519

GNN training. We adopt Adam optimizer for GNN training with 0.005 learning rate. All GNN520

models are 2 layers with 256 hidden dimensions. For Pokec-z, Pokec-n, German, Credit, and521

Recidivism the training epochs are 1500, 1500, 4000, 1000, and 1000 respectively.522
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（a） （b）
Figure 6: (a) shows the visualization of node representations from real graph and distilled graph,
as well as their barycenter, on Credit dataset, after PCA. (b) shows the visualization of geometric
intuition of node from real graph and distilled graph on Credit dataset.

G.3 More Visualization523

We also visualize the node representation using PCA. We could observe that the barycenter of node524

from real graph and distilled graph is very close. And The distribution of node representation after525

being normalized to the circumference is consistent with the geometric intuition shown in Figure 6.526

H Limitations and Future Work527

H.1 Non-binary Sensitive Attribute528

For categorical sensitive attributes, if only one sensitive membership group’s embeddings are far away529

from others, then the mean embeddings will still be close to the majority embeddings, especially for530

many categories, resulting in low variance (coherence). We argue that only this group with distant531

embedding (a small portion of samples) can have their sensitive attribute detected using embedding532

distributions. From a metric perspective, if we adopt the maximized �DP over any sensitive attribute533

group pair, the bias should be large due to considering the worst case. The proposed coherence may534

not work well in this scenario, and an advanced coherence can be developed for this case, e.g., the535

maximized variance over any sensitive group pair. We leave the advanced coherence development for536

categorical, multiple, or even continuous sensitive attributes in future work.537

H.2 Individual Fairness538

From Table 4, we find that all datasets suffer from a surprisingly more severe individual fairness539

problem (much higher IND score) when the model is trained on the distilled graph, even if we use540

InFoRM or REDRESS. This could be an interesting direction for future work, and we will add541

discussion with references in the related work section.542

H.3 Other Tasks543

Our paper mainly focuses node classification tasks and it is possible to extend our method to other544

tasks or other group fairness problems. For instance, FGD may alleviate group fairness issues in link545

prediction tasks by reducing the coherence bias among different link groups. Exploring other tasks546

(e.g., recommendation, graph classification) or other fairness metrics (e.g., individual fairness, rank547

fairness) could be interesting for future work.548
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