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Abstract

As graph neural networks (GNNs) struggle with large-scale graphs due to high
computational demands, graph data distillation promises to alleviate this issue
by distilling a large real graph into a smaller distilled graph while maintaining
comparable prediction performance for GNNs trained on both graphs. However,
we observe that GNNs trained on distilled graphs may exhibit more severe group
fairness issues than GNNs trained on real graphs for vanilla and fair GNNs training.
Motivated by these observations, we propose fair graph distillation (FGD), an
advanced graph distillation approach to generate fair distilled graphs. The chal-
lenge lies in the deficiency of sensitive attributes for nodes in the distilled graph,
making most debiasing methods (e.g., regularization and adversarial debiasing)
intractable for distilled graphs. We develop a simple yet effective bias metric,
named coherence, for distilled graphs. Based on the proposed coherence metric,
we introduce a framework for fair graph distillation using a bi-level optimization
algorithm. Extensive experiments demonstrate that the proposed algorithm can
achieve better prediction performance-fairness trade-offs across various datasets
and GNN architectures.

1 Introduction

Real-world data, like chemical molecules, social networks, and transportation networks, can be
represented as graphs [Han et al., 2022a, Ling et al., 2023a, Jiang et al., 2022a, Ying et al., 2018,
Ling et al., 2023b, Tong et al., 2020, Han et al., 2022b]. Graph neural networks (GNNs) excel at
capturing structural information but struggle with large-scale graphs due to memory consumption
and computational expense caused by the neighborhood explosion problem[Hamilton et al., 2017,
Liu et al., 2023c]. This cost becomes unaffordable in situations requiring repeated GNN training,
such as neural architecture search and continual learning [Liu et al., 2018, Zhou et al., 2019, Li and
Hoiem, 2017, Liu et al., 2023b]. Dataset distillation is a promising solution to address computation
challenges by generating small, informative distilled data for neural network training in downstream
tasks [Jin et al., 2021, 2022, Zhao et al., 2021a,b, Nguyen et al., 2021]. Techniques like dataset
condensation [Zhao et al., 2021b, Jin et al., 2021] can significantly reduce training data size without
major performance degradation in the image and graph domains. However, focusing solely on
prediction performance may introduce fairness issues, as sensitive information can be condensed into
distilled data for prediction. A natural question is raised: Is the model trained on the distilled graph
fair, and if not, how can we achieve fair graph distillation?

In this work, we focus on the group fairness1 for node classification tasks under binary sensitive
attribute setting. We discover that GNNs trained on distilled small graphs exhibit more severe group
fairness issues than those on real graphs. In other words, graph distillation can even amplify graph

1Group fairness ensures equitable treatment of diverse demographic groups by algorithms Mehrabi et al.
[2021]. Such as in mortality prediction, issues arise when true positive rates significantly differ between sensitive
groups. Group fairness metrics will be introduced in Section 5.1.
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data bias, which challenges the applicability of graph distillation in high-stake applications [Mehrabi
et al., 2021, Suresh and Guttag, 2019]. To this end, we propose a fair graph distillation framework to
offer a significantly reduced graph size and also better utility-fairness trade-off while maintaining
predictive performance.

Many debias methods explicitly use sensitive attributes, but these are inherently missing in distilled
graphs because they are excluded from the data attributes and the meaning of the attributes may
change during the optimization process. In this paper, we point out the relationship between the space
of real graphs and the space of distilled graphs and develop a simple estimator of sensitive attributes
and introduce a bias measurement called consistency. We then propose a bi-level optimization
algorithm for fair graph distillation: the outer loop generates a fair and informative distilled graph
using gradient matching and coherence loss, while GNNs train on distilled graphs in the inner loop.
In a nutshell, the contributions can be summarized as follows:

• To our knowledge, this is the first paper to identify group fairness issues in conventional graph
distillation methods with binary sensitive attributes, motivating the formulation of a fair graph
distillation problem in node classification tasks.

• We discover the relationship between the space of real graphs and the space of distilled graphs.
We develop a bias metric called coherence for distilled graphs and propose a bi-level optimization
framework using this metric to achieve fair graph distillation.

• We perform extensive experiments on various real-world datasets and GNN architectures to validate
the effectiveness of the proposed FGD algorithm. Results demonstrate that FGD achieves a better
accuracy-fairness trade-off compared to vanilla graph distillation methods and numerous baselines.

2 Preliminaries

2.1 Notations

Figure 1: AUC and ∆DP of the GNN
trained on real graph data and distilled
graph data. Both utility and fairness per-
formance deteriorates after vanilla graph
distillation.

We consider node classification tasks given a graph
dataset G = {A,X,Y ,S} with N nodes. Here,
A ∈ {0, 1}N×N is the adjacency matrix, and Aij = 1
represents there exists an edge between node i and j.
X ∈ RN×D is the node feature matrix, where D is
non-sensitive feature dimension for each node. Y ∈
{0, 1, · · · , C−1}N denotes the node labels overC classes.
For simplicity, we consider a binary sensitive attribute2

S ∈ {0, 1}N . Πs is the sensitive membership diago-
nal matrix. Πs

ii = 1 if and only if i-th node belongs
to sensitive group s. The distilled small graph dataset
is marked as G′ = {A′,X ′,Y ′} which contains N ′

nodes and N ′ ≪ N . Note that elements of the dis-
tilled adjacency matrix satisfy A′

ij ∈ [0, 1] and no sen-
sitive attributes exist in G′. The latent node represen-
tation of real graph is Z, and the span space of it is
span(Z) :=

{∑N
i=1 wizi|1 ≤ i ≤ N,wi ∈ R

}
. Sim-

ilar definition of Z′ and span(Z′) for distilled graph.

2.2 Graph Distillation via Gradient Matching

The purpose of graph distillation is to generate a distilled graph G′ such that the GNN model, denoted
as GNNθ with parameters θ, trained on distilled graph performs comparably to the model trained on
the real graph G. The objective can be formulated as the following bi-level optimization problem:

min
G′

L (GNNθG′ (A,X) ,Y ) s.t θG
′
= argmin

θ
L (GNNθ (A

′,X ′) ,Y ′) (1)

where θG
′

denotes the optimal parameter trained on distilled small graph G′, and L(·, ·) denotes the
loss function. To tackle the above optimization problem, the gradient matching method Zhao et al.

2The sensitive attribute S represents the attribute that the respondents do not want to be disclosed, such as
gender or age. Sensitive attribute S is not included in the normal features X .
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[2021a] is proposed. The intuition is to let the GNN parameters θG
′

trained on distilled graph follow
a similar path to the GNN parameters θG trained on the real graph during model optimization. The
gradient of the GNN parameters is forced to be the same over the real and distilled graphs:

min
G′

[
T−1∑
t=0

D (∇θL(G),∇θL(G′))

]
, (2)

where D(·, ·) is a distance function, T is the number of steps of model parameters trajectory, and
θGt , θG

′

t denotes the model parameters trained on G and G′ at time step t, respectively. The gradient
calculated on G and G′ is denoted as ∇θL(G) := ∇θL (GNNθt (A,X) ,Y ) and ∇θL(G′) :=
∇θL (GNNθt (A

′,X ′) ,Y ′), respectively.

3 Bias Measurement for Distilled Graph

In this section, we empirically demonstrate the fairness issue in the distilled graph. Motivated by
this, we pursue fair graph distillation. Although distilled graphs lack sensitive attributes S′, we
observe that between the node representations of the real and distilled graphs: their barycenter remain
consistent, and their spaces are also consistent. We leverage this phenomenon to develop a simple,
effective bias measurement for distilled graphs.

3.1 Is Graph Distillation Really Fair?

Our empirical investigation assesses the fairness of graph distillation across various datasets and
architectures. We compare the utility (AUC) and fairness (demographic parity (∆DP ) [Beutel et al.,
2017]) of GNNs trained on real graphs and those trained on distilled graphs created by the vanilla
graph distillation method. The utility and fairness performance are shown in Figure 1. We can
find that: For datasets like Pokec-n, German, and Credit, distilled graph-based GNNs have higher
∆DP and lower AUC performance, suggesting a compromise in fairness and prediction performance.
We also notice that, for Pokec-z and Recidivism datasets, these GNNs exhibit lower ∆DP and
significantly lower AUC performance (shown in Table 1), indicating a trade-off between improved
fairness and reduced prediction performance. We observe similar results when using other fair GNN
models. More details can be found in Appendix E. Motivated by these observations, we aim to find a
better prediction performance and fairness trade-off via chasing the fair graph distillation method.

3.2 Geometric Connections in Data Distillation

(a) (b)

Figure 2: Geometric intuition of sen-
sitive attribute estimation. The projec-
tion distance indicates the extent to
which the node belongs to the sensi-
tive group. (a) Unfair node represen-
tations have a large coherence bias.
(b) Fair node representations have a
small coherence bias.

The distilled data can be generated via minimizing gradient
distance in Equation 2. To simplify the analysis, we consider
D(·, ·) as Euclidean distance and those model parameters
during optimization trajectory satisfying θ ∼ Pθ, where Pθ

is certain but unknown parameters’ distribution. Therefore,
the objective can be transformed as

min
G′

Eθ∼Pθ

[
||∇θL(G)−∇θL(G′)||2

]
. (3)

We consider three assumptions of the model parameters’ dis-
tribution and the convergence for loss minimization.
Assumption 3.1 (Model parameters’ distribution). We as-
sume that each model parameter in the last softmax layer
satisfies the same distribution.
Assumption 3.2 (Loss minimization). We assume that exists
at least one distilled dataset that minimizes Equation 3.
Theorem 3.3 (Consistent Span Space). We empirically show
that span(Z ′) ≈ span(Z) via calculating the principle angles between them. We also provides the
rigorous proof of z′ ∈ span(Z) under distribution matching in Appendix D.
Theorem 3.4 (Consistent Geometric Barycenters). Under Assumptions 3.1 and 3.2, the barycenter
of the last representation for the optimal distilled graph and the real graphs are consistent, i.e.
1
N

∑N
i=1 zi =

1
N ′

∑N ′

i=1 z
′
i. Please see proof in Appendix B.
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3.3 Sensitive Attribute Estimation

The consistent span space and geometric barycenter suggest that we can estimate sensitive attributes
from the representations of both distilled and real graphs. We frame sensitive attribute estimation as a
classification problem: Given a data representation z′ ∈ Z ′, what is the probability that z′ belongs to
the sensitive group?

Ridge regression for distance measurement. Notice that the representation of each sensitive
group for the real graph is known, we define Z0 and Z1 as the representation matrix for sensitive
group s = 0 and s = 1. To measure the probability that z′ belongs to these two sensitive groups, we
first find the closest vector z′

proj = Z⊤
s q ∈ Span(Zs) to approximate the representation z′, and then

use the norm of z′ − z′
proj to measure the distance between z′ and sensitive group Zs. Specifically,

we adopt ridge regression to find the optimal coefficient vector q∗, which can be formulated as

Dist(z′,Zs) = ∥z′ −Z⊤
s q∗∥2 (4)

s.t q∗ = argmin
q

γ∥z′ −Z⊤
s q∥22 + ∥q∥22, (5)

where γ is the hyperparameter for ridge regression. For the optimal q∗, we have

ps = z′ −Z⊤
s q∗ = z′ − γZ⊤

s (I + γZsZ
⊤
s )−1Zsz

′, (6)

where ⊤ represents matrix transpose, ps is approximately the projection onto the orthogonal comple-
ment of the subspace span(Zs). The proof is in Appendix C.

Sensitive attribute soft estimation. Since ps = z′ − γZ⊤
s (I + γZsZ

⊤
s )−1Zsz

′ can be viewed
as approximately the projection of z onto the orthogonal complement of sensitive group Zs, ∥ps∥2 is
small if z is in sensitive group Zs and large otherwise. The probability of the given data representation
z belongs to the sensitive group Zs can further be inferred via a softmax function:

πs(z′) =
exp (−λ ∥ps∥2)∑1
s=0 exp (−λ ∥ps∥2)

∈ [0, 1], (7)

where λ is the temperature hyperparameter. The sensitive attribute probability of z′ for distilled graph
can be estimated as probability distribution [πs=0(z′), πs=1(z′)], where πs=0(z′) + πs=1(z′) = 1.

3.4 Bias Measurement

Given the estimated sensitive attribute probability for z′ of each distilled node, how can we measure
the bias for them? For a fair representation, we can not distinguish which representation is more likely
to be a specific sensitive group. Therefore, we adopt a simple surrogate bias measurement, named
coherence, the variance of the estimated sensitive group membership. Given the whole distilled data
representation Z ′ = [z1..., zN ′ ]⊤, the bias can be defined as:

Cohs(Z ′) = V̂ ar (πs(Z ′)) =
1

N ′

N ′∑
n=1

πs(z′
n)−

1

N ′

N ′∑
n=1

πs(z′
n)


Note that Cohs=0(Z ′) = Cohs=1(Z ′), and we adopt abbreviation Coh(Z ′) 3.

Geometric intuition. The intuition of sensitive attribute estimation, as illustrated in Figure 2, can
be grasped from a geometric standpoint. In a toy example with a two-dimensional data representation,
z′ ∈ R2, we consider two demographic groups for a binary sensitive attribute. The subspace spanned
by the data representations from these groups is denoted by S0 and S1. Data representations to
be estimated are z′

0 and z′
1. p0

0, p0
1 and p1

0, p1
1 is the projection of z′

0 and z′
1 onto the orthogonal

complement of S0 and S1. As for fair data representation, zero coherent encourages all representations
aligned with a “line" so that all representations are with the same normalized similarity with sensitive
groups. Figure 2 (a) shows the case in which the data representation is biased where z′

0 and z′
1 can

be easily distinguished. Figure 2 (b) shows that fairer data representation as they are less separable.

3For multiple-value sensitive attribute, we can use average coherence Coh(Z′) across all sensitive groups.
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Figure 3: An overview of the proposed framework. The synthesizer generates the attribute matrix and
adjacency matrix of the distilled small graph G′. The Cross-Entropy loss LCE guides the update of
GNNs model during the inner optimization loop. Gradient matching loss LGM and coherence loss
LCoh guide the update of the synthesizer during the outer optimization loop for utility and fairness.

4 Methodology

4.1 Problem Statement

Based on the proposed coherence metric, we argue that if Coh(Z ′) is reduced, bias in the distilled
graph can be mitigated. As a result, if GNNs are trained on such distilled graphs, the bias issues
in downstream tasks could also be alleviated. The problem is formally defined as: Given an
undirected attributed network G = {A,X,Y ,S}, our goal is to obtain an debiased distilled graph
G′ = {A′,X ′,Y ′} via reducing Coh, so that the fairness issues of GNNs trained on G′ is mitigated.
Hence the overall objective goal for generating a fair and condensed graph is:

min
G′

LGM + αLCoh (GNNθG′ (A′,X ′) ,GNNθG′ (A,X))

s.t θG
′
= argmin

θ
LCE (GNNθ (A

′,X ′) ,Y ′) (8)

4.2 Fair Graph Distillation Loss

Gradient Matching Loss. We adopt gradient matching, as shown in equation (2), for graph
distillation to distill useful information for node classification tasks. However, treating both X ′ and
A′ as learnable parameter 4 and directly optimizing A′ is unaffordable due to O(N2) computation
complexity. Following previous work Jin et al. [2021], we parameterize A′ as a function of X ′:

A′
i,j = Sigmoid

(
MLPϕ([x

′
i;x

′
j ]) + MLPϕ([x

′
j ;x

′
i])

2

)
, (9)

where A′
i,j is i-th row, j-th column of A′, MLPϕ is a multi-layer neural network parameterized with

ϕ and [·; ·] denotes concatenation. Note that A′ is controlled to be symmetric since A′
i,j = A′

j,i.
Sigmoid function pushes A′ close to 0 or 1 to encourage its sparsity. For simplicity, we denote the
parameterized adjacency matrix as A′

ϕ. In this way, we can reduce the complexity to O(N).

The distance metric D measures the similarity of gradients over the real graph and distilled graph.
We adopt the summation of the gradient distance over all layers as the final gradient distance:

D (∇θL(G),∇θL(G)′) =
∑
i

(
1− ∇θL(G)i · ∇θL(G)′i

∥∇θL(G)i∥∥∇θL(G)′i∥

)
(10)

4The distilled label Y ′ is sampled from real label Y with the same class probability, and it is fixed.
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where ∇θL(G)i is the i-th column vectors of the gradient matrices. Hence the loss objective for the
graph distillation module is given by:

LGM = Eθ∼Pθ

[
T−1∑
t=0

D (∇θL(G),∇θL(G′))

]
(11)

where G′ = {X ′,A′,Y ′}, t is the training epoch, and θt is well-trained GNNs model parameters.
To reduce the impact of parameter initialization, the initial model parameters θ0 are sampled from a
distribution of random initialization.

Coherence loss. In Section 3.4, we introduce coherence as a bias metric for distilled data. To
mitigate bias, we use coherence bias as a regularization for fair synthesis. This calculation employs
real graph node attribute X and distilled node attribute X ′ to estimate sensitive group memberships
but overlooks structural bias in graph data. Given the GNN propagation mechanism, bias can exist
in both node attributes and graph structure Dong et al. [2022]. Even without attribute bias, node
representation may still be biased if structural bias is present.

Work by Dong et al. [2022] suggests that structural bias can be measured through graph representation
bias. Leveraging this, we aim for low coherence in node attributes and representations to fully remove
bias from our distilled graph. Specifically, we introduce attribute and structural coherence to decrease
attribute and structural bias, respectively, by minimizing the variance in sensitive group membership
estimation for node attributes and representations. Given a real graph data G = {A,X,Y ,S} and
a distilled graph G′ = {A′,X ′,Y ′}, we feed them into a L-layer GNN, where the l-th layer latent
representation in the GNN is denoted as Zl. The latent representation for node attribute after l-hop
propagation contains both attribute bias as well as structural bias. Note the node attribute X and
X ′ before propagation as Z0 and Z ′

0, we get a set of latent presentation {Z0,Z1, ...,ZL} for G and
{Z ′

0,Z
′
1, ...,Z

′
L} for G′. The objective to measure bias of Z ′

l is:

Coh(Z ′
l) = V̂ ar

(
πj(Z ′

l)
)
= V̂ ar

(
exp

(
−λ ∥CjZ ′

l∥2
)∑

j exp (−λ ∥CjZ ′
l∥2)

)
, (12)

where Cj = γj
(
I + γjZlΠ

jZT
l

)−1
. Πj is introduced in Sec 4.1. Since we consider the binary

sensitive attribute, j is set as 0 without losing generality and is omitted in the notations as πj(·) :=
π(·). After considering all the latent representations, the coherence loss objective is defined as the
summation of all coherence over all layers, i.e.,

LCoh =

L∑
l=0

Coh(Z ′
l) =

L∑
l=0

V̂ ar (π(Z ′
l)) . (13)

Prediction loss for GNN training. The GNNs model is trained on distilled graph G′ =
{A′,X ′,Y ′} with prediction loss. We adopt L-layer GNNs model, where θ is the parameter
of the GNN. We also adopt cross-entropy loss by default:

LCE = L (GNNθ (A
′,X ′) ,Y ′) , (14)

4.3 Final Objective and Training Algorithm

Outer loop optimization. In the outer loop, we optimize the fair graph synthesizer with gradient
matching loss and coherence loss:

min
X′,A′

LGM + αLCoh, (15)

where α is a hyperparameter to regularize the debiasing intensity. The distilled node attribute X ′ and
the distilled node label Y ′ are initialized with the nodes uniformly sampling from real graph data G.

Inner loop optimization. The GNN parameter θ is optimized in the inner loop:

min
θ

LCE (GNNθ (A
′,X ′) ,Y ′) . (16)

Instead of using the real graph data G to calculate the loss, we use the distilled graph G′. It empirically
shows good performance and better efficiency. But the adversarial training baseline uses G as it needs
the sensitive attribute for discriminator training.
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Table 1: Comparison on utility and bias mitigation between GNNs with real graph data (denoted as
Real), the distilled small graph without debiasing (denoted as Vanilla), and debiased distilled graph
(denoted as FGD) as input. ↑ denotes the larger, the better; ↓ denotes the opposite. The best ones are
in bold. The better performers in Vanilla and FGDare underlined.

GCN SGC GraphSAGE

Real Vanilla FGD Real Vanilla FGD Real Vanilla FGD

Pokec-z

ACC ↑ 70.96±0.4% 66.36±1.0% 66.58±0.7% 70.79±0.1% 68.31±0.7% 68.36±0.3% 70.59±0.3% 67.13±0.4% 67.83±0.6%
AUC ↑ 78.19±0.2% 70.30±0.4% 70.48±0.3% 77.16±0.0% 73.51±0.6% 72.92±0.4% 77.91±0.2% 70.47±0.0% 70.26±0.5%

F1 ↑ 72.16±0.5% 65.66±0.7% 66.48±0.8% 71.21±0.0% 68.09±0.4% 67.94±0.6% 72.07±0.4% 66.34±0.8% 66.62±0.7%
∆DP ↓ 4.13±1.3% 2.84±1.1% 1.75±1.1% 4.64±0.1% 7.60±1.7% 5.77±0.2% 4.54±1.3% 3.74±0.8% 2.17±1.6%
∆EO ↓ 4.57±1.7% 2.19±1.3% 1.19±1.0% 5.26±0.1% 7.88±1.9% 4.78±0.2% 5.25±1.2% 2.50±1.2% 2.56±1.2%

Pokec-n

ACC ↑ 71.97±0.3% 50.10±2.7% 54.80±1.5% 71.16±0.0% 68.06±0.9% 68.19±0.8% 71.91±0.3% 52.80±2.2% 58.40±1.6%
AUC ↑ 78.15±0.2% 51.09±2.3% 63.75±0.5% 76.34±0.0% 69.96±0.3% 70.18±0.5% 77.56±0.1% 53.95±2.8% 60.06±2.3%

F1 ↑ 69.92±0.4% 44.21±4.6% 49.90±5.1% 67.63±0.0% 63.95±0.1% 64.03±0.1% 70.01±0.3% 58.75±6.1% 62.36±2.0%
∆DP ↓ 0.59±0.4% 4.02±0.6% 0.66±0.5% 4.3±0.1% 5.00±0.5% 4.7±0.5% 0.99±0.4% 2.38±2.8% 2.09±1.6%
∆EO ↓ 1.04±0.6% 5.20±1.0% 1.20±1.2% 2.26±0.1% 4.6±0.9% 4.26±1.2% 1.64±0.6% 2.81±3.0% 2.02±1.2%

German

ACC ↑ 74.37±0.4% 72.83±0.8% 70.50±0.1% 72.62±1.6% 70.24±0.2% 70.06±0.1% 74.24±0.2% 72.00±0.5% 71.43±0.9%
AUC ↑ 74.31±0.2% 57.75±4.8% 57.89±5.5% 74.94±1.2% 54.82±0.4% 53.92±1.4% 71.37±0.4% 57.32±0.4% 58.76±5.9%

F1 ↑ 84.24±0.1% 83.51±0.4% 83.09±0.4% 83.13±0.3% 82.43±0.0% 82.36±0.0% 84.18±0.1% 83.12±0.4% 82.93±0.3%
∆DP ↓ 4.8±3.9% 5.38±3.3% 1.93±0.1% 3.36±2.8% 2.10±2.8% 1.3±0.9% 3.00±0.8% 5.33±2.9% 0.76±0.5%
∆EO ↓ 2.50±2.7% 1.04±1.1% 0.61±0.4% 9.38±9.0% 2.44±0.1% 0.28±0.2% 1.64±0.5% 2.89±1.0% 0.52±0.4%

Credit

ACC ↑ 80.54±0.0% 76.92±1.9% 77.91±0.1% 79.66±0.1% 77.41±0.0% 77.36±0.7% 80.52±0.0% 77.91±0.5% 77.86±0.1%
AUC ↑ 75.89±0.0% 68.82±2.1% 68.87±0.2% 73.39±0.1% 71.78±0.0% 72.02±0.1% 75.89±0.0% 71.12±0.2% 71.36±0.1%

F1 ↑ 88.41±0.0% 85.47±2.0% 87.33±0.4% 88.09±0.0% 85.46±0.0% 85.37±0.7% 88.41±0.0% 87.00±0.9% 86.79±0.5%
∆DP ↓ 5.41±0.6% 12.04±5.4% 4.94±4.8% 2.78±0.3% 9.58±0.4% 7.28±2.8% 6.22±0.6% 8.77±2.0% 4.15±0.8%
∆EO ↓ 3.12±0.6% 9.58±5.5% 3.56±3.4% 1.19±0.3% 7.14±0.5% 5.56±0.1% 3.92±0.5% 6.72±4.0% 3.34±0.9%

Recidivism

ACC ↑ 94.45±0.0% 70.89±1.8% 70.09±2.6% 85.10±0.1% 73.32±0.2% 73.10±0.5% 94.48±0.0% 73.66±1.0% 70.63±2.0%
AUC ↑ 97.76±0.0% 71.95±2.8% 75.81±4.3% 92.24±0.1% 72.23±0.6% 72.44±0.1% 97.78±0.0% 75.84±1.2% 70.47±5.7%

F1 ↑ 92.32±0.0% 55.30±3.9% 52.97±8.3% 76.94±0.3% 60.77±0.8% 60.45±0.6% 92.35±0.1% 60.87±2.4% 56.39±6.1%
∆DP ↓ 6.52±0.1% 2.68±1.0% 0.54±0.3% 7.89±0.0% 2.85±0.9% 1.08±0.7% 6.61±0.1% 0.97±0.8% 0.10±0.1%
∆EO ↓ 3.45±0.4% 1.41±0.5% 0.46±0.2% 8.55±0.2% 2.69±0.6% 1.32±0.8% 3.56±0.3% 0.93±0.8% 0.48±0.4%

5 Experiments

We design experiments to validate the effectiveness of the proposed framework FGDand answer the
following research questions: RQ.1 How well can FGD mitigate the bias in the distilled graph and
alleviate the fairness issue of the GNNs trained on the distilled small graph? RQ.2 How well can
FGD balance the trade-off between accuracy and bias mitigation compared with other debiasing
baselines? RQ.3 Can FGD further improve the utility or bias mitigation as an add-on module to other
bias mitigation methods?

5.1 Experimental setting

Datasets. We use five real-world datasets, including Pokec-z, Pokec-n [Dai and Wang, 2021, Takac
and Zabovsky, 2012], German, Credit, and Recidivism [Agarwal et al., 2021]. The detailed setting of
the datasets is in Appendix F

GNN Models. We adopt three popular GNN variants in our experiments, including GCN [Kipf and
Welling, 2016], SGC [Wu et al., 2019], GraphSAGE [Hamilton et al., 2017].

Baselines. Given the absence of fair graph distillation work, we compare our approach with four
baselines. (1) Real uses real graph data to train a GNN model. (2) Vanilla applies a vanilla graph
distillation algorithm [Jin et al., 2022] for distilled graph data learning and GNN model training. (3)
FairGNN[Dai and Wang, 2021] trains a fair GNN model adversarially on real graph data, aiming
to achieve good prediction while fooling a discriminator. (4) EDITS [Dong et al., 2022] is a model-
agnostic debiasing method that rewires graph data for fair GNNs.

Evaluation Metrics. We evaluate model performance from model utility and bias measurements.
Good performance represents low bias and high model utility. For model utility metrics, we adopt
accuracy (ACC), the area under the receiver operating characteristic curve (AUC), and F1 score to
measure prediction performance. For bias measurement, we adopt two commonly used fairness
metrics, i.e., demographic parity (∆DP ) and equal opportunity (∆EO) [Beutel et al., 2017, Louizos
et al., 2015]. Denote the binary label as y ∈ {0, 1}, and sensitive attribute as s ∈ {0, 1}. ŷ ∈ {0, 1}
denotes the model prediction. The violation of DP and EO are given by ∆DP = |P (ŷ = 1 | s =
0)− P (ŷ = 1 | s = 1)|, and ∆EO = |P (ŷ = 1 | y = 1, s = 0)− P (ŷ = 1 | y = 1, s = 1)|.
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Figure 4: Trade-off comparison between FGDand other baselines for five real-world graph datasets.

5.2 Debiasing distilled Graph

In response to RQ.1, we assess FGD’s bias mitigation and prediction performance across various
GNN architectures and datasets, as shown in Table 1. We compare the ∆DP and ∆EO values of
GNNs trained on real graphs (Real), vanilla distilled graphs (Vanilla), and debiased distilled graphs
via FGD (FGD). Key findings include: (1) Models trained on Real graphs consistently outperform
Vanilla and FGD in utility, though FGD’s utility matches or surpasses Vanilla. (2) FGD consistently
yields lower bias than Vanilla, and outperforms Real on 4 out of 5 datasets, excluding Poken-n.

We compare the coherence bias of distilled graphs generated by Vanilla and FGD methods across
five real-world datasets with the GCN architecture (Table 2). Our analysis reveals that FGD reduces
unfairness, reflected in lower coherence bias in the distilled graphs. This consistency confirms the
effectiveness of coherence bias as a measure of distilled graph bias.

5.3 Trade-Off Comparison

Table 2: Coherence bias comparison between
vanilla distilled graph (denoted as Vanilla) and fair
distilled graph (denoted as FGD). The lower, the
better. The best ones are marked in bold. The ar-
chitecture model is GCN.

Vanilla FGD
Pokec-z 0.009468 0.002123(−77.57%)
Pokec-n 0.004464 0.000432(−90.32%)
German 0.012772 0.003489(−72.68%)
Credit 0.011864 0.002866(−75.84%)

Recidivism 0.000098 0.000038(−61.22%)

In response to RQ.2, we compare the trade-
off between model utility and bias mitigation
against other baselines using the GCN archi-
tecture. We utilize the Pareto frontier Ishizaka
and Nemery [2013] to evaluate our approach’s
utility-fairness trade-off, using different hyper-
parameters. The Pareto frontier graphically rep-
resents optimal trade-offs in multi-objective op-
timization. We use AUC as the utility metric and
∆DP and ∆EO as fairness metrics. Higher AUC
and lower ∆DP /∆EO are preferred, so models
with Pareto frontier curves closer to the bottom
right corner (AUC on the horizontal axis and
∆DP /∆EO on the vertical) have better trade-off
performance.

Figure 4 shows the results for models trained on the real graph, the distilled graph debiased by
baseline methods (vanilla graph distillation, FairGNN, and EDITS5) and the distilled graph debiased
by FGD. We can observe: (1) From a model utility perspective, FGD performs comparably to other
baselines, like vanilla graph distillation, FairGNN, and EDITS 6, suggesting it preserves sufficient
information for node classification. (2) In terms of bias mitigation, all baselines show effectiveness,
with FGD exhibiting the best results. (3) When considering the utility-fairness trade-off, FGD’s
Pareto front curve lies at the bottom right corner of all baselines, signifying it offers the best balance.
Thus, FGD outperforms other baselines in balancing model utility and bias mitigation.

5.4 Add-on Module

5EDITS publishes fair graph for German, Credit and Recidivism dataset on Github
6Out of memory (OOM) issue appears when running EDITS on Pokec-z and Pokec-n datasets.
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Figure 5: Trade-off comparison between FairGNN,
EDITS and FairGNN+FGD, EDITS+FGD on
Credit dataset.

In addition to its superior trade-off performance,
our method, FGD, can enhance other debiasing
baselines like FairGNN and EDITS by acting
as an add-on debias module. This compatibil-
ity is due to the fact that these baselines can
replace the cross-entropy loss in the GNN train-
ing module. To answer RQ.3, we conducted
experiments on the Credit dataset comparing
FairGNN/EDITS performance with and without
FGD. As shown in Figure 5, FairGNN/EDITS
coupled with FGD delivers better utility-fairness
trade-off, demonstrating FGD’s potential to boost other debias methods.

6 Related Work

Dataset Distillation & Knowledge Distillation. Dataset Distillation (DD) and Knowledge Distilla-
tion (KD) are methods to improve the efficiency of training deep neural networks. DD synthesizes
a small dataset encapsulating the knowledge of a larger one, achieving comparable model perfor-
mance [Wang et al., 2018, Kim et al., 2022, Lee et al., 2022, Zhao et al., 2021a, Yang et al., 2022].
It employs a bi-level optimization approach, with dataset condensation (DC) speeding up the pro-
cess via gradient matching of model parameters. DD also helps with repeated training or privacy
applications like continual learning, neural architecture search, and privacy-preserving scenarios.
Meanwhile, graph data condensation methods have been developed for node and graph classification
tasks [Jin et al., 2022]. KD, on the other hand, enhances computational efficiency through model
compression and acceleration. It trains a compact student model using the knowledge from a larger
teacher model Gou et al. [2021]To address the scarcity and high complexity of labeled data in GNNs,
knowledge distillation (KD) was introduced to enhance existing GNNs Liu et al. [2023a], Wang et al.
[2023], also for fairness problem Dong et al. [2023]. While KD focuses on model compression, DD
targets data compression, each improving efficiency from model-centric and data-centric perspectives.

Fair Graph Learning. Fairness in machine learning has attracted many research efforts[Chuang
and Mroueh, 2020, Zhang et al., 2018, Du et al., 2021, Jiang et al., 2022b, Han et al., 2023, Jiang et al.,
2023]. Many technologies are introduced in graph neural networks to achieve fair graph learning in
node classification tasks, including optimization with regularization [Jiang et al., 2022a], rebalancing
[Zeng et al., 2021], adversarial learning [Dai and Wang, 2021, Bose and Hamilton, 2019, Fisher et al.,
2020] and graph rewiring [Köse and Shen, 2021, Dong et al., 2022]. For link prediction, dyadic
fairness and corresponding graph rewiring solutions are also developed in [Li et al., 2021]. Another
line of work focuses on solving the individual fairness problem on the graph data Song et al. [2022],
Dong et al. [2021], Kang et al. [2020].

7 Conclusion

Despite the ability of graph distillation to condense valuable graph data, this study finds that the
vanilla method can worsen fairness issues. Therefore, we introduce a fair graph distillation process
to generate fair distilled graph data. As the distilled graph lacks the nodes’ sensitive attributes,
conventional fair methods cannot be directly applied. However, we identify a consistent geometric
phenomenon in graph distillation to estimate these sensitive attributes. We also introduce a new bias
metric, coherence, and propose a bi-level optimization framework, FGD, for fair graph distillation.
Experimental results validate FGD’s effectiveness in mitigating bias while maintaining model utility
across various GNN architectures and datasets. Future work will focus on addressing individual
fairness issues and non-binary sensitive attribute conditions, among other aspects, as discussed in
Appendix H.
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A Training Algorithm

The training algorithm for fair graph distillation is shown in Algorithm 1.

Algorithm 1 Fair Graph Distillation

Input: Training graph data G = {X,A,S,Y }, hyperparameters α, temperature γ, number of
alternative optimization step Talt, distilled label Y ′.
Initialize X ′ based on real attributes, synthesizer model ϕ, and GNNs model θ.
for t = 1 to Talt do

1. Train GNNs model using distilled graph G′
t and Equation (15) to obtain GNNθt .

2. Given GNNs model GNNθt , calculate the gradient distance D
(
∇θL(G),∇θL(G′

t)
)

over the
real graph G and distilled graph G′

t.
3. Calculate coherence loss based on GNNs model GNNθt , real graph G and distilled graph G′

t.

4. Train synthesizer model using prediction loss as Equation (16).
end for
Output: The fair distilled graph G′ = {A′,X ′,Y ′}.

B Proof of Theorem 3.4

We consider GNNs model to learn node presentation zi in the real graph G and then followed a linear
classifier W = [w0, · · · ,wC−1] and softmax layer, where wj is the weight vector connected to the
j-tj output neuron. We first focus on the relation between the latent representation and the gradient
of the linear classification layer. It is easy to obtain the cross-entropy loss Ji (J ′

i) for i-th node with
label yi in real graph G (distilled graph G′) as follows:

Ji = − log
exp(w⊤

yi
· zi)∑

k exp(w
⊤
k · zi)

, (17)

Then we define gradient over weight vector as gi,j = ∂Ji

∂wj
and g′

i,j =
∂J ′

i

∂wj
in the real and distilled

graph. If j = yi, we can obtain

gi,yi
= −

∑
k exp(w

⊤
k · zi)

exp(w⊤
yi
· zi)

·
exp(w⊤

yi
· zi)

∑
k exp(w

⊤
k · zi)− exp2(w⊤

yi
· zi)(∑

k exp(w
⊤
k · zi)

)2 · zi

= −zi +
exp(w⊤

yi
· zi)∑

k exp(w
⊤
k · zi)

· zi, (18)

Similarly, for j ̸= y, we have

gi,j =
exp(w⊤

yi
· zi)∑

k exp(w
⊤
k · zi)

· zi, (19)

In other words, the gradient of the loss for i-th node with label yi with respect to the weight vector
connected to the j-th output neuron is given by

gi,j =
exp(w⊤

yi
· zi)∑

k exp(w
⊤
k · zi)

· zi − 1j=yi
zi. (20)

Based on Assumption 3.1, each model parameter in the last softmax layer satisfies the same distribu-
tion. In other words, the expectation of all predictions are the same, i.e.,

EPθ

[ exp(w⊤
0 · zi)∑

k exp(w
⊤
k · zi)

]
= · · · = EPθ

[ exp(w⊤
C−1 · zi)∑

k exp(w
⊤
k · zi)

]
. (21)
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Note that the gradient calculation is based on backpropagation, the gradient for the last linear
classification layer is quite critical for the gradient of other layers. Hence we consider the gradient of
the last linear classification layer in the real graph, shown by

Eθ∼Pθ

[
∇wj

L(G)
]
= Eθ∼Pθ

[ 1
N

N∑
i=1

gi,j
]

=
1

NC

N∑
i=1

zi −
1

N

∑
{i:yi=j}

zi, (22)

Similarly, we have the gradient of the last linear classification layer in the distilled graph as follows:

Eθ∼Pθ

[
∇wj

L(G′)
]
= Eθ∼Pθ

[ 1

N ′

N∑
i=1

g′
i,j

]
=

1

N ′C

N ′∑
i=1

z′
i −

1

N ′

∑
{i:y′

i=j}

z′
i, (23)

Under assumption 3.2, it is easy to know that the optimal solution to minimizing the objective
minG′ Eθ∼PW

[
||∇WL(G)−∇WL(G′)||2

]
satisfy ∇WL(G) = ∇WL(G′). Since the distilled label

is sampling to keep class label probability, we have |{i:y′
i=j}|
N ′ = |{i:yi=j}|

N for any class index i.
Therefore, based on Equations (22) and (23), we have the optimal distilled graph satisfy

1

N

N∑
i=1

zi =
1

N ′

N ′∑
i=1

z′
i. (24)

C Proof of Ridge Regression

Define objective function J = γ∥z′ −Z⊤
s q∥22 + ∥q∥22, it is easy to obtain

∂J

∂q
= −2γZs

(
z′ −Z⊤

s q
)
+ 2q = 0 (25)

Therefore, the optimal q∗ = γ(I + γZsZ
⊤
s )−1Zsz

′. Therefore, the projection of representation z′

in the complement space of sensitive group Zs is given by

z′ −Z⊤
s q∗ = z′ − γZ⊤

s (I + γZsZ
⊤
s )−1Zsz

′ (26)

D More Results on Consistent Span Space

We conduct experiments to measure the distance between span(Z) and span(Z ′) using principle
angles between subspaces and emperically shows that span(Z) ≈ span(Z ′) in the real dataset.

The concept of principal angle is used in linear algebra to measure the similarity between two
subspaces of a vector space. It helps quantify how close or far apart these subspaces are. Given
subspace, L,M ⊆ Rn, with dimL = l ≥ dimM = m, there are m principal angles between L and
M denoted as 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θm ≤ π

2 between L and M are recursively defined, where

cos (θi) := min

{
⟨x,y >
∥x∥∥y∥

| x ∈ L,y ∈ M,x ⊥ xk,y ⊥ yk, k = 1, · · · , i− 1

}
. (27)

Notably, when the two subspaces are aligned, the principal angels are close to 0. We report the
average principal angles of span(Z) and span(Z ′) on all datasets as following:

• Pokec-z: 1.08× 10−6

• Pokec-n: 1.03× 10−6

• German: 4.84× 10−7
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• Credit: 2.57× 10−7

• Recidivism: 3.87× 10−7

In the experiments, the principal angles of span(Z) and span(Z ′) on all dataset are nearly 0. This
indicates that the distance between space span(Z ′) and space span(Z) are quite small in practice.

Additionally, we would like to mention that [1] provides the rigorous proof of z′ ∈ span(Z)
for distribution matching under several assumptions (although we can not prove it under gradient
matching setting). According to formulas 21 from [1], it is assumed that (1) the **linear extractor**
ψθ : Rd → Rk such that k < d,θ = [θi,j ] ∈ Rk×d, θi,j

iid∼ N (0, 1) and for an input z, ψθ(x) = θz.
When using distribution match method for data condensation, we have:

∂L

∂z′i
=
∂Eθ||d||2

∂z′i
= − 2

|N ′|

 1

N

N∑
j=1

zj −
1

N ′

N ′∑
j=1

z′j

T

· E[θtθ]

where d := θ
(

1
N

∑N
j=1 zj −

1
N ′

∑N ′

j=1 z
′
j

)
, E

[
θ⊤θ

]
= kId by definition of

θ, and Id is the identity matrix of Rd. the projection components of span(Z)⊥ remain zero
throughout the optimization process of DM. And we use zi to initialize z′i, thus z′ ∈ span(Z).
However, in the implementation we use gradient matching instead of distribution matching.

Table 3: Statistical Information on Datasets
Dataset # Nodes # Attributes # Edges Avg. degree Sens Label

Pokec-n 6,185 59 21,844 7.06 Region Working field

Pokec-z 7,659 59 29,476 7.70 Region Working field

German 1,000 27 21,242 44.50 Gender Credit status

Credit 30,000 13 1,436,858 95.80 Age Future default

Recidivism 18,876 18 321,308 34.00 Race Bail decision

E Preliminary Motivation

We have added experiments comparing the fairness performance of various fair GNNs trained on
synthetic and real graph data. Specifically, we report the results (using demographic parity (DP), equal
opportunity (EO), and individual unfairness (IND) Song et al. [2022] as metrics) with EDITS Dong
et al. [2022], FairGNN Dai and Wang [2021], InFoRM Kang et al. [2020], and REDRESS Dong
et al. [2021] on five datasets in our paper. EDITS is a pre-processing debiasing method, FairGNN
is an in-processing debiasing method, and InFoRM and REDRESS focus on individual fairness.
We encountered out-of-memory (OOM) issues when implementing GUIDE and REDRESS on an
NVIDIA GeForce RTX A5000 (24GB GPU memory), so we used InFoRM as the baseline. Due to
the extensive training time required for REDRESS, we only report results on the German dataset
for REDRESS. We use demographic parity (DP), equal opportunity (EO), and individual unfairness
(IND) as metrics.Table 4 demonstrates the result. From Table 4, we can see that in terms of the group
fairness metrics (DP, EO), the fairness problem becomes uniformly worse on the Credit, German,
and Pokecn datasets for all debiasing methods. For the Recidivism dataset, the distilled graph shows
fewer fairness issues (lower DP or EO), especially for the EDITS method. This may result from the
drop in utility of the model trained on the distilled graph (AUC is too low). As shown in Figure 4 of
our paper, FGD can achieve a better performance-fairness trade-off compared to the baselines.

F Dataset Statistics

Pokec. The Pokec dataset consists of millions of anonymized user profiles from Slovakia’s most
popular social network in 2012, with information such as gender, age, hobbies, interests, education,
and working field. The dataset was sampled into Pokec-z and Pokec-n based on user province, with
region as the sensitive attribute. The task is to predict user working field.
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Table 4: Utility and group fairness comparison between real graph and distilled graph with various
debias method. Bold value indicates worse fairness performance.

Recidivism Credit German Pokecn Pokecz
Real Distillated Real Distillated Real Distillated Real Distillated Real Distillated

EDITS
AUC↑ 0.971 0.658 0.740 0.704 0.668 0.506 OOM OOM OOM OOM

DP↓ 0.067 0.005 0.027 0.063 0.009 0.024 OOM OOM OOM OOM
EO↓ 0.038 0.011 0.018 0.028 0.008 0.030 OOM OOM OOM OOM

FairGNN
AUC↑ 0.977 0.788 0.759 0.720 0.742 0.645 0.782 0.676 0.784 0.723

DP↓ 0.065 0.046 0.062 0.123 0.010 0.013 0.005 0.044 0.042 0.037
EO↓ 0.037 0.046 0.037 0.091 0.001 0.011 0.006 0.062 0.051 0.038

InFoRM

AUC↑ 0.906 0.708 0.741 0.717 0.642 0.538 0.743 0.644 0.751 0.708
DP↓ 0.011 0.118 0.004 0.174 0.085 0.018 0.009 0.009 0.020 0.048
EO↓ 0.024 0.092 0.001 0.135 0.153 0.017 0.013 0.015 0.018 0.038

IND↓ 8098 3596022 2699 338149 4360 24888 6466 272013 6828 199853

REDRESS

AUC↑ OOM OOM OOM OOM 0.719 0.483 OOM OOM OOM OOM
DP↓ OOM OOM OOM OOM 0.005 0.043 OOM OOM OOM OOM
EO↓ OOM OOM OOM OOM 0.010 0.073 OOM OOM OOM OOM

IND↓ OOM OOM OOM OOM 9728 186366 OOM OOM OOM OOM

Table 5: Parameter study of α. All the value is in scale of ×102.
α AUC ∆DP ∆EO Bias

0.04 74.75 0.84 0.88 0.19
0.5 69.42 0.66 0.43 0.15
0.6 69.37 0.58 0.16 0.14
1.0 65.35 0.00 0.00 0.11

German. The German Graph credit dataset has 1,000 client records with attributes like Gender and
LoanAmount, used to classify individuals as good or bad credit risks. The similarity between node
attributes is calculated using Minkowski distance and nodes are connected if the similarity is 80% of
the maximum similarity.

Credit. Credit dataset, consisting of 30,000 individuals with features such as education, credit
history, age, and derived spending and payment patterns. The similarity between two node attributes
is calculated using Minkowski distance as the similarity measure and the credit defaulter graph
network is constructed by connecting nodes with a similarity of 70% of the maximum similarity
between all nodes.

Recidivism. The US state court bail outcome dataset (1990-2009) contains 18,876 defendant records
with past criminal records, demographic attributes, etc. The similarity between node attributes is
calculated using Minkowski distance and nodes are connected if the similarity is 60% of the maximum
similarity.

G More Experimental Details

G.1 Parameter Study

Here we aim to study the sensitivity of FGD w.r.t. hyper-parameters. Specifically, we show the
parameter study of α on Recidivism dataset. Here α controls the intensity to regularize the coherence
bias of the distilled small graph. The results in Table 5 indicate that α can control the debiasing and
utility performance of the distilled small graph.

G.2 Implementation Details

Synthesizer training. We adopt Adam optimizer for synthesizer training with 0.0002 learning rate.
MLPϕ consists of 3 linear layer with 128 hidden dimension. The outer loop number is 16 while the
inner loop is 4 for each epoch. For each experiment, we train with a maximum of 1200 epochs and 3
independent runs. The temperature parameter γ is set to 10. X ′ and ϕ are optimized alternatively.

GNN training. We adopt Adam optimizer for GNN training with 0.005 learning rate. All GNN
models are 2 layers with 256 hidden dimensions. For Pokec-z, Pokec-n, German, Credit, and
Recidivism the training epochs are 1500, 1500, 4000, 1000, and 1000 respectively.
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（a） （b）
Figure 6: (a) shows the visualization of node representations from real graph and distilled graph,
as well as their barycenter, on Credit dataset, after PCA. (b) shows the visualization of geometric
intuition of node from real graph and distilled graph on Credit dataset.

G.3 More Visualization

We also visualize the node representation using PCA. We could observe that the barycenter of node
from real graph and distilled graph is very close. And The distribution of node representation after
being normalized to the circumference is consistent with the geometric intuition shown in Figure 6.

H Limitations and Future Work

H.1 Non-binary Sensitive Attribute

For categorical sensitive attributes, if only one sensitive membership group’s embeddings are far away
from others, then the mean embeddings will still be close to the majority embeddings, especially for
many categories, resulting in low variance (coherence). We argue that only this group with distant
embedding (a small portion of samples) can have their sensitive attribute detected using embedding
distributions. From a metric perspective, if we adopt the maximized ∆DP over any sensitive attribute
group pair, the bias should be large due to considering the worst case. The proposed coherence may
not work well in this scenario, and an advanced coherence can be developed for this case, e.g., the
maximized variance over any sensitive group pair. We leave the advanced coherence development for
categorical, multiple, or even continuous sensitive attributes in future work.

H.2 Individual Fairness

From Table 4, we find that all datasets suffer from a surprisingly more severe individual fairness
problem (much higher IND score) when the model is trained on the distilled graph, even if we use
InFoRM or REDRESS. This could be an interesting direction for future work, and we will add
discussion with references in the related work section.

H.3 Other Tasks

Our paper mainly focuses node classification tasks and it is possible to extend our method to other
tasks or other group fairness problems. For instance, FGD may alleviate group fairness issues in link
prediction tasks by reducing the coherence bias among different link groups. Exploring other tasks
(e.g., recommendation, graph classification) or other fairness metrics (e.g., individual fairness, rank
fairness) could be interesting for future work.
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