
Model and Feature Diversity for Bayesian Neural
Networks in Mutual Learning

Supplementary Material

Cuong Pham1 Cuong C. Nguyen2 Trung Le1 Dinh Phung 1,4

Gustavo Carneiro3 Thanh-Toan Do1

1Department of Data Science and AI, Monash University, Australia
2Australian Institute for Machine Learning, University of Adelaide, Australia

3Centre for Vision, Speech and Signal Processing, University of Surrey, United Kingdom
4VinAI, Vietnam

{cuong.pham1, trunglm, dinh.phung, toan.do}@monash.edu
cuong.nguyen@adelaide.edu.au, g.carneiro@surrey.ac.uk

A.1 Limitation

Even though our proposed approach improves the performance over traditional mutual learning,
the proposed increasing diversity in parameter space is only applicable to identical Bayesian neu-
ral network models, limiting its generalizability to other Bayesian neural networks with different
architectures.

A.2 More ablation studies

A.2.1 Method for diversity in feature space

Table A.1: Ablation studies on the CIFAR-100 dataset. Top-1 classification accuracy of mutual
learning under various settings: (a) mutual learning applied without incorporating parameter and
feature diversity; (b)-(c) direct maximization of distance between features using (b) L1, and (c) L2
norms; (d)-(e) Direct maximization of KL divergence between (d) distributions of features, and (e)
distributions of fused features. *Bayesian neural networks are initialized with the mean value from
the pre-trained deterministic model.

Setting ResNet20 ResNet20* Average ResNet32 ResNet32* Average
(a) 67.27 69.61 68.44 68.59 71.45 70.53
(b) 67.37 69.58 68.50 70.21 71.65 70.93
(c) 67.32 69.50 68.41 70.42 71.76 71.09
(d) 67.74 69.65 68.70 70.32 71.89 71.11
(e) 67.57 70.04 68.81 70.35 71.95 71.15

We evaluate top-1 classification accuracy under various mutual learning settings, by conducting a
series of ablation studies on the CIFAR-100 dataset, as shown in Table A.1. Those settings comprise
several aspects. The first is traditional mutual learning without incorporating parameter and feature
diversity. Secondly, we explore the direct maximization of the distance between features using L1
or L2 norms. We also test the direct maximization of Kullback-Leibler (KL) divergence between
feature distributions. Finally, we experiment with the proposed approach that made use of fused
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feature distributions. The goal of these ablation studies is to gain a more understanding of how these
individual methods influence the performance of mutual learning.

Direct maximize distance between features with L1, L2 distance. As presented in Table A.1, the
direct maximization of L1 or L2 distance between the features of peer Bayesian neural networks does
not necessarily improve the effectiveness of mutual learning. Specifically, traditional mutual learning
as presented in setting (a) outperforms the methods that explicitly maximize the L1 (as in setting
b) or L2 distance (as in setting c) between peer networks’ features. This indicates that maximizing
these distances may not be the best strategy for enhancing mutual learning.

Direct maximize KL divergence between feature distributions. We further conduct ablation
studies focusing on directly maximizing the Kullback-Leibler (KL) divergence between feature
distributions of peer Bayesian neural networks (as in setting d in Table A.1). This approach offers
a slight improvement over strategies that utilized L1 or L2 distance. However, the performance
achieved is lower than when maximizing the distance between fused feature distributions (as in
setting e in Table A.1).

A.2.2 Method for diversity in parameter space

Table A.2: Ablation studies on the CIFAR-100 dataset. Comparison of top-1 classification accuracy
of mutual learning when measuring distance between parameter distributions using Kullback-Leibler
(KL), and Optimal transport (OT). *Bayesian neural networks are initialized with the mean value
from the pre-trained deterministic model.

Setting ResNet20 ResNet20* Average ResNet32 ResNet32* Average
KL 67.44 69.98 68.71 69.65 71.80 70.73
OT 67.78 70.22 69.00 69.70 71.99 70.85

KL vs OT in parameter space. We conduct experiments to compare the use of optimal transport
and Kullback-Leibler (KL) divergence for measuring distances in the parameter space. As shown in
Table A.2, the results for both ResNet20 and ResNet32 BNN models demonstrate that using optimal
transport yields higher accuracy compared to using KL divergence.

A.3 The choice of hyper parameters

Regarding hyper parameters T , α, β: For the temperature T , we follow the seminal works [2] and [1].
This parameter T controls the smoothness of the prediction distribution. As the value of T increases,
the prediction distribution becomes smoother. The hyper parameters α and β control the impacts of
the diversity of network parameter distributions and network feature distributions on the learning of a
pair of peer networks. We present the ablation studies on the choice of T , α, and β on CIFAR100.
"*" means Bayesian neural networks that are initialized with the mean value from the pre-trained
deterministic model.

For ablation studies for parameter T, we vary the value of T from 1 to 5 and fix the values of α = 1
and β = 2. The results are shown in Table A.3. The results show that the best value of T is 3.

Table A.3: Ablation studies for parameter T.
T 1 2 3 4 5
ResNet20 66.6 67.66 68.32 67.95 67.93
ResNet20* 69.62 70.14 70.45 70.12 69.97

For ablation studies for parameter α, we vary α when promoting diversity in parameter space, and set
the value of T = 3 and β = 0. The results are shown in Table A.4. The results show that by setting
α = 1, we achieve a better performance compared to other tested values of α.
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Table A.4: Ablation studies for parameter α.
α 0.1 1 2 5 10
ResNet20 67.25 67.78 67.18 67.45 67.29
ResNet20* 69.79 70.22 69.92 69.61 69.48

For ablation studies for parameter β, we vary β when promoting diversity in feature space, and set
the value of T = 3 and α = 0. The results are shown in Table A.5. The results show that by setting
β = 2, we achieve a better performance compared to other tested values of β.

Table A.5: Ablation studies for parameter β.
β 0.1 1 2 5 10
ResNet20 66.95 67.17 67.57 67.14 67.09
ResNet20* 69.84 69.91 70.04 69.85 69.90

In addition, from our experiments, we found that the accuracies are only slightly different when α
and β take values in {1, 2}.

A.4 Visualizations

Figure A.1: Comparison of optimal transport distance between the parameter distributions of peer
Bayesian neural networks in mutual learning with diversity in parameter space and traditional mutual
learning [3] on the CIFAR-100 dataset.

Distance between parameter distributions. For each iteration, we obtain Gaussian distributions
with parameters θ1 = (µθ1 ,Σθ1) and θ2 = (µθ2 ,Σθ2) for BNN models B1 and B2, respectively. We
then measure the distance between two posterior distributions D(q(w; θ1), q(w; θ2)). With diagonal
covariances Σθ1 = diag(σ2

θ1
), and Σθ2 = diag(σ2

θ2
), we have a simple form of distance between

two approximate posteriors:

D(q(w; θ1), q(w; θ2)) = ∥µθ1 − µθ2∥
2
+ ∥σθ1 − σθ2∥

2
. (1)

During the training process, we measure the optimal transport distance between parameter distribu-
tions using Eq. 1. As shown in Figure. A.1, it is clear that our proposed method, which promotes
diversity in the parameter space, leads to larger distances between parameter distributions compared
to traditional mutual learning. Additionally, we observe that the optimal transport distance between
parameter distributions in our proposed method increases only until it reaches a saturation point. This
indicates that while our method maximizes the distance between parameter distributions, this distance
does not grow indefinitely.
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Figure A.2: Comparison of KL divergence between the fused feature distributions of peer Bayesian
neural networks in mutual learning with diversity in feature space and traditional mutual learning on
the CIFAR-100 dataset.

Distance between fused feature distributions. Given that Q and P are the probability distributions
of fused features from BNN models B1 and B2 (detailed in the main paper), respectively, the distance
between fused feature distributions is represented as:

DKL(G
B2, GB1) = KL [P∥Q] =

∫
P(x) log

(
P(x)

Q(x)

)
dx. (2)

During the training process, we measure the KL divergence between fused feature distributions. As
shown in Figure. A.2, it is clear that our proposed method, which promotes diversity in the feature
space, leads to larger KL divergence between fused feature distributions compared to traditional
mutual learning. Additionally, we note that in our proposed method, the KL divergence between
fused feature distributions increases only until it reaches a saturation point. This indicates that while
our method maximizes the distance between fused feature distributions, this distance does not grow
indefinitely.
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