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Abstract

Fréchet regression has emerged as a promising approach for regression analysis
involving non-Euclidean response variables. However, its practical applicability
has been hindered by its reliance on ideal scenarios with abundant and noiseless
covariate data. In this paper, we present a novel estimation method that tackles these
limitations by leveraging the low-rank structure inherent in the covariate matrix.
Our proposed framework combines the concepts of global Fréchet regression and
principal component regression, aiming to improve the efficiency and accuracy
of the regression estimator. By incorporating the low-rank structure, our method
enables more effective modeling and estimation, particularly in high-dimensional
and errors-in-variables regression settings. We provide a theoretical analysis of
the proposed estimator’s large-sample properties, including a comprehensive rate
analysis of bias, variance, and additional variations due to measurement errors.
Furthermore, our numerical experiments provide empirical evidence that supports
the theoretical findings, demonstrating the superior performance of our approach.
Overall, this work introduces a promising framework for regression analysis of
non-Euclidean variables, effectively addressing the challenges associated with
limited and noisy covariate data, with potential applications in diverse fields.

1 Introduction

Regression analysis is a fundamental statistical methodology to model the relationship between
response variables and explanatory variables (covariates). Linear regression, for example, models the
(conditional) expected value of the response variable as a linear function of covariates. Regression
models enable researchers and analysts to make predictions, gain insights into how input variables
influence the outcomes of interest, and validate hypothetical associations between variables in
inferential studies. As a result, regression is widely utilized across various scientific domains,
including economics, psychology, biology, and engineering [53, 21, 29].

In recent decades, there has been a growing interest in developing statistical methods capable of
handling random objects in non-Euclidean spaces. Examples of these include functional data analysis
[41], statistical manifold learning [31], statistical network analysis [34], and object-oriented data
analysis [39]. In such contexts, the response variable is defined in a metric space that may lack an
algebraic structure, making it challenging to apply global, parametric approaches toward regression
as in the classical Euclidean setting. To overcome this challenge, (global) Fréchet regression, which
models the relationship by fitting the (conditional) barycenters of the responses as a function of
covariates, has been introduced [40]. Notably, when the Euclidean metric is considered, Fréchet
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regression recovers classical Euclidean regression models. For more details on Fréchet regression
and its recent developments, we refer readers to [30, 40, 22, 45, 27].

Nevertheless, most existing research on Fréchet regression has focused on ideal scenarios char-
acterized by abundant covariate data that are accurately measured and free of noise. In practical
applications, however, high-dimensional data often arise, which are also susceptible to measurement
errors and other forms of contamination. These errors can stem from various sources, such as
unreliable data collection methods (e.g., low-resolution probes, subjective self-reports) or imperfect
data storage and transmission. The high-dimensionality and the presence of measurement errors in
covariates pose critical challenges for statistical inference, as regression analysis based on error-prone
covariates may result in incorrect associations between variables, yielding misleading conclusions.

To address these limitations, it is crucial to extend the methodology and analysis of Fréchet regression
to tackle high-dimensional errors-in-variables problems. In this work, we aim to leverage the low-
rank structure in the covariates to enhance the estimation accuracy and computational efficiency
of Fréchet regression. Specifically, we explore the extension of principal component regression to
handle errors-in-variables regression problems with non-Euclidean response variables.

1.1 Contributions

This paper contributes to advancing the (global) Fréchet regression of non-Euclidean response
variables, with a particular focus on high-dimensional, errors-in-variables regression.

Firstly, we propose a novel framework, called the regularized (global) Fréchet regression (Section 3)
that combines the ideas from Fréchet regression [40] and the principal component regression [32].
This framework effectively utilizes the low-rank structure in the matrix of (Euclidean) covariates
by extracting its principal components via low-rank matrix approximation. Our proposed method is
straightforward to implement, not requiring any knowledge about the error-generating mechanism.

Furthermore, we provide a comprehensive theoretical analysis (Section 4) in three main theorems
to establish the effectiveness of the proposed framework. Firstly, we prove the consistency of
the proposed estimator for the true global Fréchet regression model (Theorem 1). Secondly, we
investigate the convergence rate of the estimator’s bias and variance (Theorem 2). Lastly, we derive
an upper bound for the distance between the estimates obtained using error-free covariates and those
with errors-in-variables covariates (Theorem 3). Collectively, these results demonstrate that our
approach effectively addresses model mis-specification and achieves more efficient model estimation
by leveraging the low-rank structure of covariates, despite the presence of inherent bias due to
unobserved measurement errors.

To validate our theoretical findings, we conduct numerical experiments on synthetic datasets (Section
5). We observe that the proposed method provides more accurate estimates of the regression param-
eters, especially in high-dimensional settings. Our experimental results emphasize the importance
of incorporating the low-rank structure of covariates in Fréchet regression, and provide empirical
evidence that aligns with our theoretical analysis.

1.2 Related work

Metric-space-valued variables. Nonparametric regression models for Riemannian-manifold-valued
responses were proposed as a generalization of regression for multivariate outputs by Steinke et
al. [48, 49]. These works provided a foundation for recent developments in regression analysis of
non-Euclidean responses. Later, Hein [30] proposed a Nadaraya-Watson-type kernel estimation of
regression model for general metric-space-valued outcomes. Since then, statistical properties of
regression models for some special classes of metric-space-valued outcomes, such as distribution
functions [23, 52, 28] and matrix-valued responses [57, 20], have been investigated. Recently, many
researchers have introduced further advances in Fréchet regression, including [40, 10, 37, 45]. In this
study, we use the global Fréchet regression proposed in [40] as the basis for our proposed method.

Errors-in-variables regression. Much of earlier work on errors-in-variables (EIV) problems in the
statistical literature can be found in [13], which covers the simulation-extrapolation (SIMEX) [16, 11],
the attenuation correction method [36], covariate-adjusted model [46, 19], and the deconvolution
kernel method [25, 24, 18]. The regression calibration method [47], instrumental variable modeling
[12, 43], and the two-phase study design [9, 4] were also proposed when additional data are available
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for correcting measurement errors. In the high-dimensional modeling literature, regularization
methods for recovering the true covariate structure can also be utilized [38, 7, 17]. Despite a diverse
body of literature on high-dimensional learning and robust regression modeling, much of it assumes
response spaces to be vector spaces endowed with inner products. In this paper, we tackle EIV
problems within the Fréchet regression framework. While previous works have explored regression
analysis in non-Euclidean metric spaces, addressing EIV issues in this context remains uncharted.

Principal component regression. The principal component regression (PCR) [32] is a statistical
technique that regresses response variables on principal component scores of the covariate matrix. The
conventional PCR selects a few principal components as the “new” regressors associated with the first
leading eigenvalues to explain the highest proportion of variations observed in the original covariate
matrix. In functional data analysis, PCR is known to have a shrinkage effect on the model estimate
and produce robust prediction performance in functional regression [42, 33]. Recently, Agarwal et al.
[2] investigated the robustness of PCR in the presence of measurement errors on covariates and the
statistical guarantees for learning a good predictive model. Unlike prior statistical analyses of EIV
problems that often assume known or estimable noise distributions, PCR leverages inherent low-rank
structures in the covariates without requiring a priori knowledge of measurement error distributions.
We adopt PCR as a concrete, practical solution to EIV models in non-Euclidean regression, driven
by two compelling considerations. Firstly, the prevalence of (approximate) low-rank structures in
real-world datasets enhances the practical relevance of our approach. Secondly, we intentionally opt
for an approach with minimal assumptions regarding covariate errors to ensure broad applicability.

1.3 Organization

In Section 2, we introduce the notation used throughout the paper, and overview the global Fréchet
regression framework. Section 3 presents the problem setup, objectives, and our proposed estimator,
which we refer to as the regularized Fréchet regression (Definition 4). In Section 4, we discuss
theoretical guarantees on the regularized Fréchet regression method in accurately estimating the
global Fréchet regression function. Section 5 presents the results of numerical “proof-of-concept”
experiments that support the theoretical findings. Finally, we conclude this paper with discussions in
Section 6. Due to space constraints, detailed proofs of the theorems as well as additional details and
discussions of experiments are provided in the Appendix.

2 Preliminaries

2.1 Notation

Let N denote the set of positive integers and R denote the set of real numbers. Also, let R+ :=
{x ∈ R : x ≥ 0}. For n ∈ N, we let [n] := {1, . . . , n}. We mostly use plain letters to denote
scalars, vectors, and random variables, but we also use boldface uppercase letters for matrices, and
curly letters to denote sets when useful. Note that we may identify a vector with its column matrix
representation. For a matrix X , we let X−1 denote its inverse (if exists) and X† denote the Moore-
Penrose pseudoinverse of X . Also, we let rowsp (X) and colsp (X) denote the row and column
spaces of X , respectively. Furthermore, we let spec (X) denote the set of non-zero singular values
of X , σi(X) denote the i-th largest singular value of X , and σ(λ)(X) := inf{σi(X) > λ : i ∈ N}
with the convention inf ∅ = ∞. We let 1n = (1, 1, . . . , 1)⊤ ∈ Rd and let 1 denote the indicator
function. We let ∥ · ∥ denote a norm, and set ∥ · ∥ = ∥ · ∥2 (the ℓ2-norm for vectors, and the spectral
norm for matrices) by default unless stated otherwise. For a finite set D, we may identify D with its
empirical measure νD = 1

|D|
∑

x∈D δx, where δx denotes the Dirac measure supported on {x}.

Letting f, g : R → R, we write f(x) = O(g(x)) as x → ∞ if there exist M > 0 and x0 > 0 such
that |f(x)| ≤ M · g(x) for all x ≥ x0. Likewise, we write f(x) = Ω(g(x)) if g(x) = O(f(x)).
Furthermore, we write f(x) = o(g(x)) as x → ∞ if limx→∞

f(x)
g(x) = 0. For a sequence of random

variables Xn, and a sequence an, we write Xn = Op(an) as n → ∞ if for any ε > 0, there exists
M ∈ R+ and N ∈ N such that P

(∣∣Xn

an

∣∣ > M
)
< ε for all n ≥ N . Similarly, we write Xn = op(an)

if limn→∞ P
(∣∣Xn

an

∣∣ > ε
)
= 0 for all ε > 0.
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2.2 Global Fréchet regression

Let (X,Y ) be a random variable that has a joint distribution PX,Y supported on Rp ×M, where Rp

is the p-dimensional Euclidean space and M = (M, d) is a metric space equipped with a distance
function d : M × M → R. We write the marginal distribution of X as PX , and the conditional
distribution of Y given X as PY |X .
Definition 1 (Fréchet regression function). Let (X,Y ) be a random element that takes value in
Rp ×M. The Fréchet regression function of Y on X is a function φ∗ : Rp → M such that

φ∗(x) = argmin
y∈M

E
[
d2(Y, y) |X = x

]
, ∀x ∈ suppPX ⊆ Rp. (1)

We note that φ∗(x) is the best predictor of Y given X = x, as it minimizes the marginal risk
E
[
d2(Y, φ∗(X))

]
under the squared-distance loss. In the literature, φ∗(x) is also known as the

conditional Fréchet mean of Y given X = x [26]. It is important to recognize that the existence
and uniqueness of the Fréchet regression function are closely tied to the geometric characteristics of
M, and are not guaranteed in general [3, 8]. Nonetheless, extensive research has been conducted
on the existence and uniqueness of Fréchet means in various metric spaces commonly encountered
in practical applications. Examples include the unit circle in R2 [14], Riemannian manifolds [1, 5],
Alexandrov spaces with non-positive curvature [51], metric spaces with upper bounded curvature
[58], and Wasserstein space [59, 35].

While modeling and estimating the Fréchet regression function φ∗ is often of interest, its global
(parametric) modeling may not be straightforward, especially when M lacks a useful algebraic
structure, such as an inner product. For instance, in classical linear regression analysis with M = R,
the conditional distribution of Y given X = x is normally distributed with a mean of φ∗(x) =
α + β⊤x and a fixed variance σ2, where α and β represent the regression coefficients. Similarly,
when M possesses a linear-algebraic structure, one can specify a class of regression functions
that quantifies the association between the expected outcome and covariates in an additive and
multiplicative manner. However, the lack of an algebraic structure in general metric spaces may
prevent us from characterizing the barycenter φ∗(x) in the same way classical regression analysis
determines the expected value of outcomes with changing covariates.

To address this challenge, Petersen and Müller [40] recently proposed to exploit algebraic structures
in the space of covariates, Rp, instead of M. Specifically, they consider a weighted Fréchet mean as

φ(x) = argmin
y∈M

E
[
w(X,x) · d2(Y, y)

]
, (2)

where w : Rp × Rp → R is a weight function such that w(ξ, x) denotes the influence of ξ at x. In
particular, Petersen and Müller [40] defined the global Fréchet regression function with a specific
choice of w as follows.
Definition 2 (Global Fréchet regression function). Let (X,Y ) be a random variable in Rp ×M.
Let µ = E(X) and Σ = Var(X). The global Fréchet regression function of Y on X is a function
φglo : Rp → M such that

φglo(x) = argmin
y∈M

E
[
wglo(X,x) · d2(Y, y)

]
(3)

where wglo(X,x) = 1 + (X − µ)⊤Σ−1(x− µ).

When M is an inner product space (e.g., M = R), the function φglo restores the standard linear
regression model representation over the domain Rp. For this reason, φglo is commonly referred to
as the global Fréchet regression model for metric-space-valued outcomes [40, 37, 54].

Remark on Definition 2 One might wonder why the term “global” is used to describe φglo as a
Fréchet regression function. The use of the adjective “global” serves to emphasize its distinction
from “local” nonparametric regression methods that interpolate data points. Notably, when M is a
Hilbert space, φglo reduces to the natural linear models. For instance, if M = R, then it follows that
φglo(x) = E

[
wglo(X,x) · Y

]
= α+ β⊤(x− µ), where α = E[Y ] and β = Σ−1 · E

[
(X − µ) · Y

]
.

These linear models hold uniformly for the evaluation point x. Similarly, in the case of an L2 space
equipped with the squared-distance metric d2(y, y′) = ∥y − y′∥22 induced by the L2 norm, φglo

represents the linear regression model for functional responses. Thus, φglo establishes a globally
defined model that spans the entire space.
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3 Problem and methodology

3.1 Problem formulation

Let (X,Y ) be a random variable in Rp × M and PX,Y be their joint distribution. Let Dn =
{(Xi, Yi) : i ∈ [n]} be an independent and identically distributed (IID) sample drawn from PX,Y .
Note that we may identify the set Dn with its discrete measure (empirical distribution), cf. Section
2.1. We consider the problem of estimating the global Fréchet regression function φglo (see Definition
2) from data Dn. In this setting, a natural estimator of φglo would be its sample-analogue estimator.
With µ̂Dn

= E(X,Y )∼Dn
(X) = 1

n

∑n
i=1 Xi and Σ̂Dn

= Var(X,Y )∼Dn
(X) = 1

n

∑n
i=1(Xi − µ̂Dn

) ·
(Xi − µ̂Dn

)⊤, the sample-analogue estimator φ̂Dn
is defined as

φ̂Dn(x) = argmin
y∈M

 1

n

∑
(Xi,Yi)∈Dn

ŵDn(Xi, x) · d2(Yi, y)
] (4)

where ŵDn
(X,x) = 1 + (X − µ̂Dn

)⊤Σ̂−1
Dn

(x− µ̂Dn
). The statistical properties of φ̂Dn

, including
the asymptotic distribution, a ridge-type variable selection operation, and total variation regularization
method have been investigated [40, 37, 54].

In practice, however, we may only be able to access D̃n = {(Zi, Yi) : i ∈ [n]} instead of Dn, where

Zi = Xi + εi, i = 1, . . . , n (5)

denotes an error-prone observation of the covariates X by measurement error ε. This formulation
corresponds to the classical errors-in-variables problem.

Objective. Given a dataset, either Dn or D̃n, our aim is to produce an estimate φ̂ of the global
Fréchet regression function φglo so that the prediction error is minimized. Specifically, we evaluate
the performance of φ̂ by means of the distance in the response space, d

(
φ̂(x), φglo(x)

)
.

3.2 Fréchet regression with covariate principal components

Singular value thresholding. Among various low-rank matrix approximation methods, we consider
the (hard) singular value thresholding (SVT). For any λ ∈ R+, we define the map SVT(λ) : Rn×p →
Rn×p that removes all singular values that are less than the threshold λ. To be precise, SVT(λ) can be
expressed in terms of the singular value decomposition (SVD) as follows:

M =

min{n,p}∑
i=1

si · uiv
⊤
i is a SVD =⇒ SVT(λ)(M) =

min{n,p}∑
i=1

si · 1{si > λ} · uiv
⊤
i . (6)

Regularized Fréchet regression. We introduce a variant of the sample-analog estimator of the global
Fréchet regression function based on principal components of the sample covariance. To facilitate the
description of our proposed estimator, we introduce additional notation here.
Definition 3 (Covariate mean/covariance). For a probability distribution ν on Rp ×M, the covariate
mean and covariate covariance with respect to ν are respectively defined as

µν := E(X,Y )∼ν(X) and Σν := Var(X,Y )∼ν(X). (7)

Recall that a finite set D ⊂ Rp ×M may be identified with its empirical distribution; it follows that

µD =
1

|D|
∑

(xi,yi)∈D

xi and ΣD =
1

|D|
∑

(xi,yi)∈D

(xi − µD) · (xi − µD)
⊤. (8)

Definition 4 (Regularized Fréchet regression). Let ν be a probability distribution on Rp ×M and
λ ∈ R+. The λ-regularized Fréchet regression function for ν is a map φ

(λ)
ν : Rp → M such that

φ(λ)
ν (x) = argmin

y∈M
R(λ)

ν (y;x), where R(λ)
ν (y;x) = E(X,Y )∼ν

[
w(λ)

ν (X,x) · d2(Y, y)
]

and w(λ)
ν (x′, x) = 1 + (x′ − µν)

⊤
[
SVT(λ)

(
Σν

)]†
(x− µν).

(9)
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When Dn = {(Xi, Yi) ∈ Rp ×M : i ∈ [n]} is an IID sample from PX,Y , the λ-regularized estima-
tor φ(λ)

Dn
subsumes the sample-analogue estimator φ̂Dn in (4) as a special case where λ = 0.

Connection to principal component regression. Here we remark that when M is a Euclidean
space, the regularized Fréchet regression function φ

(λ)
ν effectively reduces to the principal component

regression. Suppose that M = R and Dn = {(xi, yi) ∈ Rp × R : i ∈ [n]} is a given dataset. Then
φ
(λ)
Dn

(x) = y + β̂⊤
λ (x− µDn) where y = 1

n

∑n
i=1 yi and β̂λ = [SVT(λ)

(
ΣDn

)
]† ·
[
1
n

∑n
i=1(xi −

µDn) · (yi − y)
]
. Observe that β̂λ is exactly the regression coefficient of principal component

regression applied to the centered dataset Dctr
n = {(xi − µDn , yi − y) : i ∈ [n]} using k principal

components with k = maxa∈[p]

{
σa(ΣDctr

n
) ≥ λ

}
.

4 Main results

In this section, we investigate properties of φ(λ)
ν for λ ≥ 0, with a focus on two cases: ν = Dn

and ν = D̃n, cf. Section 3.1. By denoting the true distribution that generates (X,Y ) as ν∗, we can
express φglo as φ

(0)
ν∗ . To analyze the discrepancy between the estimator φ(λ)

ν (x) and φglo(x), we
examine the relationships depicted in the schematic in Figure 1. Our theoretical findings can be
summarized as follows: Even in the presence of covariate noises, φ(λ)

D̃n
with a suitable λ > 0 can

effectively eliminate the noise in Z to estimate X , thereby reducing the error in estimating φglo.

Unregularized
(λ = 0)

Regularized
(λ > 0)

Population Finite-sample Errors-in-variables

φglo(x) = φ
(0)
ν∗ (x)

φ
(λ)
ν∗ (x)

φ
(0)
Dn

(x)

φ
(λ)
Dn

(x)

φ
(0)

D̃n
(x)

φ
(λ)

D̃n
(x)

[40]

Lemma 1
(Appendix)

Lemma 2
(Appendix)

Theorems 1 & 2

Theorem 3

Figure 1: A schematic for the relationship between the regularized Fréchet regression estimators.

4.1 Model assumptions and examples

We impose the following assumptions for our analysis.

(C0) (Existence) For any probability distribution ν and any λ ∈ R+, the object φ(λ)
ν (x) exists

(almost surely) and is unique. In particular, infy∈M: d(y,φglo(x))>ε R(y;x) > R(φglo(x);x)

for all ε > 0, where R(y;x) := R
(0)
ν∗ (y;x).

(C1) (Growth) There exist Dg > 0, Cg > 0 and α > 1, possibly depending on x, such that for
any probability distribution ν and any λ ∈ R+,{
d
(
y, φ

(λ)
ν (x)

)
< Dg =⇒ R

(λ)
ν (y;x)−R

(λ)
ν

(
φ
(λ)
ν (x);x

)
≥ Cg · d

(
y, φ

(λ)
ν (x)

)α
,

d
(
y, φ

(λ)
ν (x)

)
≥ Dg =⇒ R

(λ)
ν (y;x)−R

(λ)
ν

(
φ
(λ)
ν (x);x

)
≥ Cg ·Dα

g .
(10)

(C2) (Bounded entropy) There exists Ce > 0, possibly depending on y, such that

lim sup
δ→0

∫ 1

0

√
1 + logN

(
Bd

(
y, δ
)
, δε
)
dε ≤ Ce, (11)

where Bd(y, δ) := {y′ ∈ M : d(y, y′) ≤ δ} and N(S, ε) is the ε-covering number2 of S.

2The formal definition of covering number is provided in Appendix A; see Definition 6.
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Assumption (C0) is common to establish the consistency of an M-estimator [55, Chapter 3.2]; in
particular, it ensures the weak convergence of the empirical process R(λ)

Dn
to the population process

R
(λ)
ν∗ implying convergence of their minimizers. Furthermore, the conditions on the curvature (C1)

and the covering number (C2) control the behavior of the objectives near the minimum in order to
obtain rates of convergence; it is worth mentioning that (C2) corresponds to a (locally) bounded
entropy for every y ∈ M, while (P1) in [40] requires the same condition only with y = φglo(x).
These conditions arise from empirical process theory and are also commonly adopted [40, 44, 45].

Here we provide several examples of the space M, in which the conditions (C0), (C1) and (C2) are
satisfied. We verify the conditions in Appendix A; see Propositions 1, 2, 3, and 4.
Example 1. Let M = (H, dHS) be a finite-dimensional Hilbert space H equipped with the Hilbert-
Schmidt metric dHS(y1, y2) = ⟨y1 − y2, y1 − y2⟩1/2, e.g., M = (Rr, d2) where d2 is the ℓ2-metric.
Example 2. Let M be W , the set of probability distributions G on R such that

∫
R x2 dG(x) < ∞,

equipped with the Wasserstein metric dW defined as

dW (G1, G2)
2 =

∫ 1

0

(
G−1

1 (t)−G−1
2 (t)

)2
dt,

where G−1
1 and G−1

2 are the quantile functions of G1 and G2, respectively. See [40, Section 6].

Example 3. Let M =
{
M ∈ Rr×r : M = MT ,M ⪰ 0 and Mii = 1,∀i ∈ [r]

}
be the set of corre-

lation matrices of size r, equipped with the Frobenius metric, dF (M,M ′) = ∥M −M ′∥F .
Example 4. Let M be a (bounded) Riemannian manifold of dimension r, and let dg be the geodesic
distance induced by the Riemannian metric.

4.2 Theorem statements

4.2.1 Noiseless covariate setting

We first verify the consistency of the λ-regularized Fréchet regression function as follows.
Theorem 1 (Consistency). Suppose that Assumption (C0) holds. If diam (M) < ∞, then for any
λ ∈ R such that 0 ≤ λ < min{σi(Σν∗) : σi(Σν∗) > 0}, and any x ∈ Rp,

d
(
φ
(λ)
Dn

(x), φ
(0)
ν∗ (x)

)
= oP (1) as n → ∞. (12)

If λ < σ(0)(Σν∗) = min{σi(Σν∗) : σi(Σν∗) > 0}, then the regularized estimator φ(λ)
Dn

(x) effectively

reduces to the same as the sample-analog estimator φ̂Dn
(x) in (4) in the limit n → ∞. Thus, φ(λ)

Dn
(x)

inherits the consistency of φ̂Dn . We provide a detailed proof of Theorem 1 in Appendix B.

In addition to the consistency of φ(λ)
Dn

in the small λ limit, we present an analysis for the convergence

rate of φ(λ)
Dn

(x) in the following theorem.
Definition 5. The Mahalanobis seminorm of x induced by a positive semidefinite matrix Σ is
∥x∥Σ :=

(
x⊤Σ†x

)1/2
.

Theorem 2 (Rate of convergence). Suppose that Assumptions (C0)–(C2) hold. If diam (M) < ∞,
then for any λ ∈ R+ and x ∈ Rp such that ∥x− µν∗∥Σν∗ ≤ Cg·Dα

g

diam (M)2·
√

rankΣν∗
,

d
(
φ
(λ)
Dn

(x), φ
(0)
ν∗ (x)

)
= OP

(
bλ(x)

1
α−1 + n− 1

2(α−1)

)
as n → ∞, (13)

where bλ(x) = rank
(
Σν∗ − Σ

(λ)
ν∗

) 1
2 · ∥x− µν∗∥

Σν∗−Σ
(λ)

ν∗
.

We obtain Theorem 2 by showing a “bias” upper bound d
(
φ
(λ)
ν∗ (x), φ

(0)
ν∗ (x)

)
= O

(
bλ(x)

1
α−1
)

and

a “variance” bound d
(
φ
(λ)
Dn

(x), φ
(λ)
ν∗ (x)

)
= OP

(
n− 1

2(α−1)
)
; see Lemmas 1 and 2 in Appendix C.

Here we remark that bλ(x) is a monotone non-decreasing function of λ, and if λ < σ(0)(Σν∗) then
bλ(x) = 0. Also, the condition on ∥x − µν∗∥Σν∗ is introduced for a technical reason, and can be
removed when Dg = ∞. Note that Condition (C1) holds with Dg = ∞ and α = 2 for Examples 1, 2
and 3. Thus, we have d

(
φ
(λ)
Dn

(x), φ
(0)
ν∗ (x)

)
= OP

(
bλ(x) + n− 1

2

)
as n → ∞.
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4.2.2 Error-prone covariate setting

Given a set Dn = {(xi, yi) : i ∈ [n]}, let XDn
:= [x1 · · · xn]

⊤ ∈ Rn×p. We let X = XDn
and

Z = XD̃n
for shorthand, and further, we let Xctr =

(
In− 1

n1n1
⊤
n

)
X and Zctr =

(
In− 1

n1n1
⊤
n

)
Z

denote the ‘row-centered’ matrices.
Theorem 3 (De-noising covariates). Suppose that Assumptions (C0) and (C1) hold. Then there exists
a constant C > 0 such that for any λ ∈ R+, if x ∈ µDn

+ rowspXctr and

∥x− µDn
∥ΣDn

≤ 1

2

(
Cg ·Dα

g

2 diam (M)
· σ

(λ)(Xctr) ∧ σ(λ)(Zctr)

∥Z −X∥
− 1

)
, (14)

then

d
(
φ
(λ)

D̃n
(x), φ

(λ)
Dn

(x)
)
≤ C ·

(
∥Z −X∥

σ(λ)(Xctr) ∧ σ(λ)(Zctr)
·
2 ·
∥∥x− µDn

∥∥
ΣDn

+ 1

Cg

) 1
α

. (15)

Note that the condition on ∥x− µν∗∥Σν∗ in (14) can be removed when Dg = ∞. We highlight that
the quantity ∥Z−X∥

σ(λ)(Xctr)∧σ(λ)(Zctr)
acts as the reciprocal of the signal-to-noise ratio. Here, ∥Z −X∥

quantifies the magnitude of the “noise” in the covariates, while min
{
σ(λ)(Xctr), σ

(λ)(Zctr)
}

measures the strength of the “signal” retained in the λ-SVT of the design matrix. We observe that the
error bound (15) increases proportionally to the normalized deviation of x from the mean, µDn , which
is a reasonable outcome. For the complete version of Theorem 3 and its proof, refer to Appendix D.

Remarks on Theorem 3. We avoid imposing distributional assumptions on the noise ε = Z −X ,
to ensure broad applicability of the result. Also, the inequality (15) is sharp, as there is a worst-
case noise instance that attains equality (up to a multiplicative constant). Despite its generality,
this upper bound highlights effective error mitigation in specific scenarios. For instance, consider
well-balanced, effectively low-rank covariates X ∈ Rn×p such that |Xij | = Ω(1) for all i, j and
σ1(X) ≍ σr(X) ≫ σr+1(X) ≍ σn∧p(X) = O(1), where r ≪ n ∧ p is the effective rank of X .
Then σ1(X)2 ≍ σr(X)2 ≍ ∥X∥2F /r ≳ np/r. Additionally, if Z = X +E where E is a random
matrix with independent sub-Gaussian rows, then ∥Z − X∥ ≲

√
n +

√
p with high probability.

In the random design scenario where the rows of X and the test point x are drawn IID from the
same distribution, ∥x− µDn

∥Σ ≈ 1 with high probability. Consequently, the upper bound in (15) is
bounded by

√
r/p+

√
r/n, which diminishes to 0 when r ≪ n ∧ p.

4.3 Proof sketches

Proof of Theorem 1. We show that R(λ)
Dn

(y;x) weakly converges to R
(0)
ν∗ (y;x) in the ℓ∞(M)-sense.

According to [55, Theorem 1.5.4], it suffices to show that (1) R(λ)
Dn

(y;x)−R
(0)
ν∗ (y;x) = op(1) for

all y ∈ M, and (2) R(λ)
Dn

is asymptotically equicontinuous in probability.

Proof of Theorem 2. We prove upper bounds for the bias and the variance separately.

To control the bias (Appendix C, Lemma 1), we show an upper bound for R
(
φ(λ)(x);x

)
−R
(
φ(x);x

)
,

and convert it to restrain the distance between the minimizers d
(
φ(λ)(x), φ(x)

)
using the Growth

condition (C1). In this conversion, we employ the “peeling technique” in empirical process theory.

To control the variance (Appendix C, Lemma 2), we follow a similar strategy as in Lemma 1, but with
additional technical considerations. Defining the ‘fluctuation variable’ Z(λ)

n (y;x) := R
(λ)
Dn

(y;x)−
R

(λ)
ν∗ (y;x) parameterized by y ∈ M, we derive a probabilistic upper bound for R(λ)

ν∗ (φ
(λ)
Dn

(x);x)−
R

(λ)
ν∗ (φ

(λ)
ν∗ (x);x) by establishing a uniform upper bound for Z(λ)

n (y;x)− Z
(λ)
n (φ(x);x); here, the

Entropy condition (C2) is used. Again, we use the Growth condition (C1) and the peeling technique
to obtain a probabilistic upper bound for the distance d(φ

(λ)
Dn

(x), φ
(λ)
ν∗ (x)).

Proof of Theorem 3. Expressing the difference in the weights w(λ)

D̃n
(y;x)− w

(λ)
Dn

(y;x) in terms of

X and Z, we utilize classical matrix perturbation theory to control R(λ)

D̃n
(y;x) − R

(λ)
Dn

(y;x), and

transform it to an upper bound on the distance d(φ(λ)

D̃n
(x), φ

(λ)
Dn

(x)) using the Growth condition (C1).
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5 Experiments

In this section, we present numerical simulation results to validate and support our theoretical
findings. We focus on global Fréchet regression analysis for one-dimensional distribution functions
(Example 2). These simulations cover various conditions, allowing us to evaluate and compare our
methodology’s performance with alternative approaches. For a summary of the experimental results,
please refer to Figure 2 and Table 1. Further details about simulation settings and additional results
are provided in Appendix E.

Experimental setup. We consider combinations of p ∈ {150, 300, 600} and n ∈ {100, 200, 400}.
The datasets Dn = {(Xi, Yi) : i ∈ [n]} and D̃n = {(Zi, Yi) : i ∈ [n]} are generated as follows. Let
Xi ∼ Np

(
0p,Σ

)
be IID multivariate Gaussian with mean 0p and covariance Σ such that spec (Σ) =

{κj > 0 : j ∈ [p]} is an exponentially decreasing sequence such that tr (Σ) =
∑p

j=1 κj = p

and κ1/κp = 103. Note that
∑⌊p/3⌋

j=1 κj

/∑p
j′=1 κj′ ≈ 0.9, and thus, Σ is effectively low-rank.

We generate Zi following (5) under two scenarios εij
IID∼ N

(
0, σ2

ε

)
and εij

IID∼ Laplace
(
0, σε

)
,

respectively. Lastly, given X = x, let Y be the distribution function of N
(
µα,β(x)+η, τ2

)
, where (i)

µα,β(x) = α+ β⊤x with α = 1 and β = p−1/2 · 1p; (ii) η ∼ N
(
0, σ2

η

)
; and (iii) τ2 ∼ IG(s1, s2),

an inverse gamma distribution with shape s1 and scale s2. We performed B = 500 Monte Carlo
experiments by drawing D(b)

n and D̃(b)
n as independent copies of Dn and D̃n, respectively, for b ∈ [B].

Performance evaluation. We assess the in-sample and out-of-sample performance of the Fréchet
regression function estimator by using the mean squared error (MSE) and the mean squared prediction
error (MSPE). To this end, we create a “test set” Dnew

N = {(Xnew
i , Y new

i ) : i ∈ [N ]}, with N = 1000.
The MSE and the MSPE are computed as the average of squared metric-distance residuals from the
observed responses in the “training set” Dn and in the “test set” Dnew

N ), respectively:

MSE(φ(λ)
ν ) =

1

n

n∑
i=1

dW
(
Yi, φ

(λ)
ν (Xi)

)2
and MSPE(φ(λ)

ν ) =
1

N

N∑
i=1

dW
(
Y new
i , φ(λ)

ν (Xnew
i )

)2
.

We report the MSE averaged over B = 500 random trials: MSE(φ
(λ)
ν ) = B−1

∑B
b=1 MSE(φ

(λ)

ν(b)),
and likewise for MSPE. Furthermore, we evaluate the accuracy and efficiency of the estimator using
bias and variance, with detailed definitions deferred to Appendix E.

Simulation results. Our numerical study demonstrates that the proposed SVT method consistently
improves both estimation and prediction performance, especially in the errors-in-variables setting.
Figure 2 highlights how the SVT estimator outperforms the naïve errors-in-variables (EIV) estimator,
which corresponds to SVT with λ = 0. The naïve EIV suffers from an intrinsic model bias, called
the attenuation effect [13], as it regresses responses on error-prone covariates. This leads to a
misrepresentation of the association between responses and true covariates, potentially leading to
statistical inference based on a mis-specified model.

Figure 2: Comparison of the prediction performance of φ(0)
Dn

(REF), φ(0)

D̃n
(EIV), and φ

(λ)

D̃n
(SVT)

(left), and the trade-off between the bias and the variance (right) for B = 500, p = 50 and n = 100.
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Table 1: Average performance of φ
(0)
Dn

(REF), φ(0)

D̃n
(EIV), and φ

(λ)

D̃n
(SVT) in various settings

(boldface indicates the best). The choice of threshold λ for SVT is detailed in Appendix E.

Error Sample size n = 100 n = 200 n = 400
distribution p Criterion REF EIV SVT REF EIV SVT REF EIV SVT

Gaussian

150

Bias 0.107 0.164 0.312 0.040 0.087 0.189 0.020 0.078 0.136√
Var 1.147 0.973 0.531 0.969 0.857 0.414 0.432 0.381 0.295

MSE 0.000 0.154 0.205 0.075 0.334 0.232 0.190 0.255 0.267
MSPE 1.613 1.267 0.686 1.245 1.042 0.513 0.492 0.456 0.412

N(0, 0.052)
300

Bias 0.317 0.352 0.485 0.112 0.170 0.327 0.039 0.091 0.207√
Var 0.805 0.731 0.523 1.137 0.970 0.512 0.964 0.845 0.405

MSE 0.000 0.033 0.217 0.000 0.152 0.235 0.075 0.327 0.237
MSPE 1.045 0.956 0.808 1.602 1.267 0.667 1.232 1.025 0.509

600

Bias 0.568 0.592 0.619 0.311 0.353 0.451 0.104 0.155 0.298√
Var 0.663 0.631 0.598 0.799 0.735 0.589 1.135 0.956 0.510

MSE 0.000 0.016 0.067 0.000 0.036 0.112 0.000 0.153 0.208
MSPE 1.075 1.062 1.054 1.039 0.968 0.858 1.602 1.242 0.657

Laplacian

150

Bias 0.102 0.112 0.286 0.045 0.053 0.171 0.019 0.025 0.121√
Var 1.155 1.113 0.549 0.971 0.949 0.421 0.431 0.416 0.297

MSE 0.000 0.026 0.187 0.075 0.151 0.218 0.189 0.205 0.253
MSPE 1.633 1.538 0.688 1.254 1.207 0.513 0.489 0.477 0.406

DE(0, 0.05)
300

Bias 0.321 0.325 0.491 0.105 0.117 0.344 0.043 0.048 0.198√
Var 0.805 0.794 0.525 1.140 1.099 0.511 0.960 0.929 0.413

MSE 0.000 0.003 0.233 0.000 0.025 0.227 0.076 0.148 0.229
MSPE 1.049 1.034 0.814 1.610 1.521 0.677 1.226 1.169 0.514

600

Bias 0.566 0.568 0.608 0.312 0.317 0.443 0.102 0.109 0.282√
Var 0.664 0.661 0.614 0.800 0.792 0.606 1.134 1.094 0.521

MSE 0.000 0.001 0.074 0.000 0.004 0.157 0.000 0.025 0.200
MSPE 1.073 1.071 1.059 1.045 1.035 0.872 1.602 1.515 0.662

Remarkably, the SVT estimator achieved a smaller MSPE even compared to the oracle estimator
(REF) obtained from the error-free sample. Although the REF estimator had the smallest MSE
due to its small bias, we observed its overfitting to the training sample, resulting in poor prediction
performance. Notably, even the naïve EIV estimator outperformed the REF estimator in MSPE.
We believe this is mainly because the true covariate matrix was nearly singular in our simulation
setup, causing multicollinearity issues for the REF. In contrast, measurement errors introduced
non-ignorable minimum singular values in the EIV covariate matrix, unintentionally mitigating
multicollinearity for the naïve EIV and causing it to behave like ridge regression.

6 Discussion

This paper has addressed errors-in-variables regression of non-Euclidean response variables through
the (global) Fréchet regression framework enhanced by low-rank approximation of covariates. Specif-
ically, we introduce a novel regularized (global) Fréchet regression framework (Section 3), which
combines the Fréchet regression with principal component regression. We also provide a compre-
hensive theoretical analysis in three main theorems (Section 4), and validate our theory through
numerical experiments on simulated datasets. Moreover, our numerical experiments demonstrate
empirical evidence of the effectiveness and superiority of our approach, reinforcing its practical
relevance and potential impact in non-Euclidean regression analysis.

We conclude this paper by proposing several promising directions for future research. First, it would
be worthwhile to explore the large sample theory for selecting the optimal threshold parameter λ in
the proposed SVT method, in order to characterize the theoretical phase transition of the bias-variance
trade-off in the regularized (global) Fréchet regression. Second, we believe that our framework could
be extended to errors-in-variables Fréchet regression for response variables in a broader class of
metric spaces, e.g., by leveraging the quadruple inequality proposed by Schötz [44, 45]. Lastly,
investigating the asymptotic distribution of the proposed SVT estimator would be highly appealing in
the statistical literature, as it would enable us to make statistical inferences on the conditional Fréchet
mean in non-Euclidean spaces [6, 8] with errors-in-variables covariates.
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A Verification of the model assumptions

A.1 Additional background

Definition 6 (ε-net and covering number). Let (M, d) be a metric space. Let S ⊆ T be a subset and
let ε > 0. A subset N ⊆ S is called an ε-net of S if every point in S is within distance ε of some
point N , i.e.,

∀x ∈ S, ∃x0 ∈ N such that d(x, x0) ≤ ε.

The ε-covering number of S, denoted by N(S, ε), is the smallest possible cardinality of an ε-net of S,
i.e.,

N(S, ε) := min

{
k ∈ N : ∃y1, . . . , yk ∈ M such that S ⊆

k⋃
i=1

Bd(yi, ε)

}
, (16)

where Bd(y, ε) = {y′ ∈ M : d(y, y′) ≤ ε} denotes the closed ε-ball centered at y ∈ M.

Let Br
2(0, 1) := {x ∈ Rr : ∥x∥2 ≤ 1} denote the unit ℓ2-norm ball in Rr. It is well known3 that for

any ε > 0, (
1

ε

)r

≤ N
(
Br

2(0, 1), ε
)
≤
(
2

ε
+ 1

)r

. (17)

A.2 Example 1: Euclidean space

Proposition 1. The space (H, dHS) defined in Example 1 satisfies Assumptions (C0), (C1), and (C2).

Proof of Proposition 1. For any probability distribution ν and any λ ∈ R+, let y
(λ)
ν :=

Eν

[
w

(λ)
ν (X,x) · Y

]
. Then we observe that

R(λ)
ν (y;x) = Eν

[
w(λ)

ν (X,x) · d2(Y, y)
]

= Eν

[
w(λ)

ν (X,x) · ∥Y − y∥2
]

= Eν

[
w(λ)

ν (X,x) · ∥Y − y(λ)ν ∥2
]
+ ∥y − y(λ)ν ∥2HS

+ 2

〈
Eν

[
w(λ)

ν (X,x) ·
(
Y − y(λ)ν

)]
︸ ︷︷ ︸

=0

, y(λ)ν − y

〉

= R(λ)
ν (y(λ)ν ;x) + ∥y − y(λ)ν ∥2HS.

As R(λ)
ν (y;x) is a strictly convex and coercive function, there exists a unique minimizer, φ(λ)

ν . Thus,
Condition (C0) is proved. Furthermore, Condition (C1) is also satisfied with Dg = ∞, Cg = 1, and
α = 2.

Lastly, for any y ∈ H and any ε > 0,

N
(
BdHS(y, δ), δε

)
= N

(
BdHS(y, 1), ε

)
≤
(
2

ε
+ 1

)r

≤ C · ε−r

where r = dimH and C > 1 is a constant that depends on r only; see the covering number upper
bound in (17). Thus, the integral (11) is bounded as follows:∫ 1

0

√
1 + logN

(
Bd

(
φ(x), δ

)
, δε
)
dε ≤

∫ 1

0

√
1 + logC − r log εdε

≤
√
1 + logC +

√
r

∫ 1

0

√
− log εdε

=
√
1 + logC +

√
r

∫ ∞

0

e−t
√
tdt

=
√
1 + logC +

√
rπ

2
3See [56, Corollary 4.2.13] for example.
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using the change of variable t = − log ε. Therefore, Assumption (C2) holds with Ce =
√
1 + logC+√

rπ
2 .

A.3 Example 2: Set of probability distributions

Proposition 2. The space (W, dW ) defined in Example 2 satisfies Assumptions (C0), (C1), and (C2).

Proof of Proposition 2. For a probability distribution function y ∈ W defined on R, let Q =
Q(W) := {Q(y) : y ∈ W} denote the collection of corresponding quantile functions, where(
Q(y)

)
(u) = y−1(u) for u ∈ [0, 1].

We note that f 7→ Eν

[
w

(λ)
ν (X,x) ⟨Q(Y ), f⟩

]
is a bounded linear functional defined on L2[0, 1]

because Eν |w(λ)
ν (X,x)|2 ≤ 2+2p ∥(x−µν)∥2Σν

implies that Eν

[
w

(λ)
ν (X,x)|·∥Q(Y )∥2

]
is bounded.

It follows from the Riesz representation theorem that there exists f (λ)
x ∈ L2[0, 1] such that

Eν

[
w(λ)(X,x) ⟨Q(Y ), g⟩2

]
= ⟨f (λ)

x , g⟩2 (18)

for all g ∈ L2[0, 1]. Then, we have

R(λ)
ν (y;x) = Eν

[
w(λ)

ν (X,x) ∥Q(Y )− f (λ)
x ∥22

]
+ ∥Q(y)− f (λ)

x ∥22, (19)
which yields that

φ(λ)
ν (x) = Q−1

(
argmin

Q∈Q
∥Q− f (λ)

x ∥22
)
. (20)

The condition (C0) follows from the convexity of (Q, ∥ · ∥2). Moreover, the convexity also gives〈
Q(y)−Q(φ

(λ)
ν (x)), f

(λ)
x (x)−Q(φ

(λ)
ν (x))

〉
2
≤ 0 for all y ∈ W , so that

R(λ)
ν (y;x)−R(λ)

ν (φ(λ)(x);x)

= ∥Q(y)− f (λ)
x (x)∥22 − ∥Q(φ(λ)

ν (x))− f (λ)
x (x)∥22

= ∥Q(y)−Q(φ(λ)
ν (x))∥2 − 2

〈
Q(y)−Q(φ(λ)

ν (x)), f (λ)
x (x)−Q(φ(λ)

ν (x))
〉
2

≥ ∥Q(y)−Q(φ(λ)
ν (x))∥2

= d2W (y, φ(λ)
ν (x)).

(21)

Therefore, the condition (C1) holds for any arbitrary constant Dg > 0 with Cg = 1 and α = 2.

Finally, we refer to [40, Proposition 1] to ensure that for any δ > 0 and any ε > 0,
sup
y∈W

logN
(
BdW

(y, δ), Deε
)
≤ sup

Q∈Q
logN

(
Bd2

(Q, δ), δε
)
≤ C · ε−1 (22)

holds with an absolute constant C > 0. Technically, this fact comes from the covering number bound
for a class of uniformly bounded and monotone functions in L2. This confirms that the entropy
condition (C2) holds.

A.4 Example 3: Set of correlation matrices

Proposition 3. The space (M, dF ) defined in Example 3 satisfies Assumptions (C0), (C1), and (C2).

Proof of Proposition 3. First of all, we note that M is a convex subset of Sr := {X ∈ Rr×r : X =
X⊤}, which is the set of r × r symmetric matrices. It is because M = Sr

+ ∩H where Sr
+ denotes

the cone of r × r positive semidefinite matrices and H := {X ∈ Sr : Xii = 1, ∀i ∈ [r]} denotes an
affine subspace of Sr, both of which are convex.

Next, we observe that Sr equipped with the Frobenius metric dF is isometrically isomorphic to
Rr(r+1)/2 equipped with the ℓ2-metric. Hence, (M, dF ) satisfies Assumptions (C0), (C1), and (C2),
inheriting these properties from the ambient space Sr, which is established by Proposition 1. We
note that the inheritance of (C0), (C1) relies on the convexity of M, while (C2) is inherited simply
based on the inclusion M ⊂ Sr.
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A.5 Example 4: Bounded Riemannian manifold

Proposition 4. The space (M, dg) defined in Example 4 satisfies Assumption (C2) provided that the
Riemannian metric is equivalent to the ambient Euclidean metric.

Furthermore, let TyM be the tangent space of M at y, and Expy : TyM → M be the manifold

exponential map at y. Let g(λ)ν (u; y, x) := R
(λ)
ν

(
Ey(u), x

)
for u ∈ TyM If (C0) holds and the

Hessian of g(λ)ν

(
u;φ

(λ)
ν (x), x

)
is positive definite, then (C1) for some Dg > 0.

Proof of Proposition 3. Since M has finite dimension and is bounded, the bounded entropy condition
(C2) follows from the metric equivalence.

Suppose that (C0) holds, and let δ > 0 be the injectivity radius at φ(λ)
ν (x). Consider y ∈ M such

that d
(
y, φ

(λ)
ν (x)

)
< δ, and let uy = Log

φ
(λ)
ν (x)

(y). Then we have

R(λ)
ν

(
y;x
)
−R(λ)

ν

(
φ(λ)
ν (x);x

)
= g(λ)ν

(
uy;φ

(λ)
ν (x), x

)
− g(λ)ν

(
0;φ(λ)

ν (x), x
)
= u⊤

y ∇2g(λ)ν (ūy)uy

for some ūy between 0 and uy. Since u⊤
y uy = d

(
y, φ

(λ)
ν (x)

)2
and g

(λ)
ν is continuous, the positive

definiteness of ∇2g
(λ)
ν (ūy) implies (C1) with α = 1.

B Proof of Theorem 1

Proof of Theorem 1. Recall from Definition 4, cf. (9), that for any probability distribution ν on Rp,
any λ ∈ R+, and any x ∈ Rp, the λ-regularized Fréchet regression function evaluated at x is given
as the minimizer of a function R

(λ)
ν as

φ(λ)
ν (x) = argmin

y∈M
R(λ)

ν (y;x)

where

R(λ)
ν (y;x) = E(X,Y )∼ν

[
w(λ)

ν (X,x) · d2(Y, y)
]

and

w(λ)
ν (x′, x) = 1 + (x′ − µν)

⊤
[
SVT(λ)

(
Σν

)]†
(x− µν).

In this proof, we follow a similar strategy to that in the proof of [40, Theorem 1]. Specifically,
it suffices to show supy∈M

∣∣R(λ)
Dn

(y;x) − R
(0)
ν∗ (y;x)

∣∣ converges to zero in probability, due to [55,

Corollary 3.2.3]. To this end, we show R
(λ)
Dn

(y;x) weakly converges to R
(0)
ν∗ (y;x) in the ℓ∞(M)-

sense, and then apply [55, Theorem 1.3.6]. Again, according to [55, Theorem 1.5.4], this weak
convergence can be proved by showing that

(S1) R
(λ)
Dn

(y;x)−R
(0)
ν∗ (y;x) = op(1) for all y ∈ M, and

(S2) R
(λ)
Dn

is asymptotically equicontinuous in probability, i.e., for any ε, η > 0, there exists
δ > 0 such that

lim sup
n

P

(
sup

y1,y2∈M: d(y1,y2)<δ

∣∣∣R(λ)
Dn

(y1;x)−R
(λ)
Dn

(y2;x)
∣∣∣ > ε

)
< η.

In what follows, we prove these two statements, (S1) and (S2), thereby completing the proof of
Theorem 1.

Step 1: proof of (S1). First of all, we observe that

R
(λ)
Dn

(y;x)−R
(0)
ν∗ (y;x) =

(
R

(λ)
Dn

(y;x)−R
(0)
Dn

(y;x)
)

︸ ︷︷ ︸
=:T1

+
(
R

(0)
Dn

(y;x)−R
(0)
ν∗ (y;x)

)
︸ ︷︷ ︸

=:T2

. (23)

We separately analyze the two terms T1 and T2 below to show T1 = op(1) and T2 = op(1) as
n → ∞.
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(i) T1 = op(1).

Let Dn = {(Xi, Yi) : i ∈ [n]}, and we re-write

T1 =
1

n

n∑
i=1

(
w

(λ)
Dn

(Xi, x)− w
(0)
Dn

(Xi, x)
)
· d2(Yi, y).

Letting µ̂n = µDn
, Σ̂n = ΣDn

, and Σ̂
(λ)
n = SVT(λ)(Σ̂n) for shorthand, we observe that

w
(λ)
Dn

(Xi, x)− w
(0)
Dn

(Xi, x) = (Xi − µ̂n)
⊤
[
Σ̂(λ),†

n − Σ̂†
n

]
(x− µ̂n).

Let X = [X1 · · · Xn]
⊤ ∈ Rn×p, and note that Σ̂n = 1

n

(
X − 1nµ̂

⊤
n

)⊤(
X − 1nµ̂

⊤
n

)
.

Then it follows that

1

n

n∑
i=1

(Xi − µ̂n)
⊤
[
Σ̂(λ),†

n − Σ̂†
n

]
=

1

n
1⊤
n

(
X − 1nµ̂

⊤
n

) [
Σ̂(λ),†

n − Σ̂†
n

]
Consider a singular value decomposition of X − 1nµ̂

⊤
n , namely,

X − 1nµ̂
⊤
n =

min{n,p}∑
i=1

si · uiv
⊤
i ,

and observe that Σ̂n =
∑min{n,p}

i=1 s2i · viv⊤i is an eigenvalue decomposition of Σ̂n. Letting

V(λ)
n := span

{
vi : i ∈ [p], 0 < si ≤

√
λ
}

be a subspace of Rp spanned by the eigenvec-

tors of Σ̂n corresponding to the nonzero eigenvalues no greater than λ, we have

Σ̂(λ),†
n − Σ̂†

n =

p∑
i=1

1

s2i
· 1{si >

√
λ} · viv⊤i −

p∑
i=1

1

s2i
· 1{si > 0} · viv⊤i

=

p∑
i=1

1

s2i
· 1{0 < si ≤

√
λ} · viv⊤i

= Σ̂†
n ·ΠV(λ)

n

= n ·
(
X − 1nµ̂

⊤
n

)†(
X − 1nµ̂

⊤
n

)†,⊤ ·ΠV(λ)
n

(24)

where ΠV(λ)
n

denotes the projection matrix onto the subspace V(λ)
n . Note that ΠV(λ)

n
= 0 if

and only if min
{
i ∈ [p] : 0 < si ≤

√
λ
}
= ∅.

Therefore, we have

T1 =
1

n

n∑
i=1

(
w

(λ)
Dn

(Xi, x)− w
(0)
Dn

(Xi, x)
)
· d2(Yi, y)

≤ diam (M)2

n
1⊤
n

(
X − 1nµ̂

⊤
n

) [
Σ̂(λ),†

n − Σ̂†
n

]
(x− µ̂n)

= diam (M)2 · 1⊤
n

(
X − 1nµ̂

⊤
n

)†,⊤ ·ΠV(λ)
n

· (x− µ̂n) ∵ (24)

= op(1).

The last line follows from the fact that supi∈[p]

(
σi(Σ̂n) − σi(Σν∗)

)
→ 0 in probability,

and thus, ΠV(λ)
n

→ 0 in probability.

(ii) T2 = op(1).
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Letting R̃n(y;x) =
1
n

∑n
i=1 w

(0)
ν∗ (Xi, x) · d2(Yi, y), we decompose T2 as follows:

T2 = R
(0)
Dn

(y;x)− R̃n(y;x) + R̃n(y;x)−R
(0)
ν∗ (y;x)

=
1

n

n∑
i=1

{
w

(0)
Dn

(Xi, x)− w
(0)
ν∗ (Xi, x)

}
· d2(Yi, y)︸ ︷︷ ︸

=:T2A

+
1

n

n∑
i=1

{
w

(0)
ν∗ (Xi, x) · d2(Yi, y)− E

[
w

(0)
ν∗ (Xi, x) · d2(Yi, y)

]}
︸ ︷︷ ︸

=:T2B

Note that T2B converges to 0 in probability by the weak law of large numbers.

Now it remains to show T2A = op(1). To this end, we note that

w
(0)
Dn

(Xi, x)− w
(0)
ν∗ (Xi, x) = Vn(x) +X⊤

i Wn(x)

where

{
Vn(x) = −µ̂⊤

n Σ̂
†
n(x− µ̂n) + µ⊤Σ†(x− µ),

Wn(x) = Σ̂†
n(x− µ̂n)− Σ†(x− µ).

(25)

Since µ̂n and Σ̂n respectively converge to µ and Σ in probability, it is possible to verify
that |Vn(x)|, ∥Wn(x)∥ converge to 0 in probability. As a result, T2 also converges to 0 in
probability.

All in all, we have R
(λ)
Dn

(y;x)−R
(0)
ν∗ (y;x) = op(1), and thus, proved (S1).

Step 2: proof of (S2). For any y1, y2 ∈ M,∣∣∣R(λ)
Dn

(y1;x)−R
(λ)
Dn

(y2;x)
∣∣∣ = ∣∣∣∣∣ 1n

n∑
i=1

w
(λ)
Dn

(Xi, x) ·
{
d2(Yi, y1)− d2(Yi, y2)

}∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣w(λ)
Dn

(Xi, x)
∣∣∣ · |d(Yi, y1) + d(Yi, y2)| · |d(Yi, y1)− d(Yi, y2)|

≤ 2 diam (M) · d(y1, y2) ·

(
1

n

n∑
i=1

∣∣∣w(λ)
Dn

(Xi, x)
∣∣∣)

= Op (d(y1, y2))

where the Op term is independent of y1, y2 ∈ M. Therefore,

sup
y1,y2∈M: d(y1,y2)<δ

∣∣∣R(λ)
Dn

(y1;x)−R
(λ)
Dn

(y2;x)
∣∣∣ = Op(δ),

which proves (S2).

C Proof of Theorem 2

In this section, we prove the two claims in Theorem 2. Specifically, in Section C.1, we present and
prove a lemma that controls the bias in the population estimator (Lemma 1), and in Section C.2, we
present and prove a lemma that controls the variance of the empirical estimator (Lemma 2).

C.1 Bias in the population estimator

We recall the definition of Mahalanobis seminorm from Definition 5: ∥x∥Σ :=
(
x⊤Σ†x

)1/2
.
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Lemma 1. Suppose that Assumptions (C0) and (C1) hold. If

∥x− µν∗∥Σν∗ ≤
Cg ·Dα

g

diam (M)2 ·
√
rankΣν∗

, (26)

then for any λ ∈ R+,

d
(
φ(λ)(x), φ(x)

)
≤ 2K0 · bλ(x)

1
α−1 = O

(
bλ(x)

1
α−1

)
(27)

where

K0 =

⌊
1

(α− 1) log 2
· log

(
4 diam (M)

Cg ·
(
1− 2−(α−1)

))⌋+ 1 and

bλ(x) =
√

rank
(
Σν∗ − Σ

(λ)
ν∗

)
· ∥x− µν∗∥

Σν∗−Σ
(λ)

ν∗
.

Proof of Lemma 1. For the sake of brevity, we write φ(λ)(x) = φ
(λ)
ν∗ (x) and φ(x) = φ

(0)
ν∗ (x)

throughout this proof, dropping the subscript ν∗. Likewise, we simply write µ = µν∗ and Σ = Σν∗ .

Step 1: A naïve upper bound. Observe that for any λ ∈ R+, x ∈ Rp, and y ∈ M,∣∣R(y;x)−R(λ)(y;x)
∣∣

=
∣∣∣Eν∗

[
(X − µ)⊤ ·

(
Σ† − Σ(λ),†

)
· (x− µ) · d2(Y, y)

] ∣∣∣
≤ diam (M)2 · Eν∗

[
∥X − µ∥Σ−Σ(λ)

]
· ∥x− µ∥Σ−Σ(λ) ∵ Cauchy-Schwarz inequality

≤ diam (M)2 ·
(
Eν∗ ∥X − µ∥2Σ−Σ(λ)

)1/2
· ∥x− µ∥Σ−Σ(λ) ∵ Jensen’s inequality

= diam (M)2 ·
√
rank

(
Σ− Σ(λ)

)
· ∥x− µ∥Σ−Σ(λ) , (28)

where the last inequality follows from Eν∗ ∥X − µ∥2Σ−Σ(λ) = rank
(
Σ− Σ(λ)

)
.

We observe that the upper bound in (28) is monotone non-decreasing with respect to λ ∈ R+, and it
converges to 0 as λ → 0. To see this, for any λ ∈ R+, we let

V(λ) := span {vi : i ∈ [p], 0 < λi ≤ λ}

where Σ =
∑p

i=1 λi · viv⊤i is an eigenvdecomposition of Σ. Letting ΠV(λ) denote the projection
matrix onto the subspace V(λ), we note that Σ − Σ(λ) = ΠV(λ)ΣΠV(λ) , and that (Σ − Σ(λ))† =
ΠV(λ)Σ†ΠV(λ) . Thus, rank

(
Σ− Σ(λ)

)
= dimV(λ), and furthermore, we notice that V(λ) = {0} if

and only if λ < λmin := min{λi : λi > 0}. Therefore,

λ < λmin =⇒ R(λ)(y;x)−R(y;x) = 0 =⇒ φ(λ)(x) = φ(x), ∀x. (29)

The observation (29), together with Assumption (C0), implies that d
(
φ(λ)(x), φ(x)

)
= o(1) as

λ → 0.

Step 2: Controlling risk difference. Next, we move on to determine the order of d
(
φ(λ)(x), φ(x)

)
— as a function of bλ(x) — for a fixed λ ∈ R. We may assume λ > λmin for the proof because the
lemma is trivial otherwise, cf. (29). Assuming λ > λmin, we may decompose the difference in the
population objective at φ(λ)(x) and φ(x) as follows:

R
(
φ(λ)(x);x

)
−R

(
φ(x);x

)
=
{
R
(
φ(λ)(x);x

)
−R(λ)

(
φ(λ)(x);x

)
+R(λ)

(
φ(x);x

)
−R

(
φ(x);x

)}
︸ ︷︷ ︸

=:R1

−
{
R(λ)

(
φ(x);x

)
−R(λ)

(
φ(λ)(x);x

)}
︸ ︷︷ ︸

=:R2

.
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We observe that both R1 and R2 are non-negative, due to the optimality of φ(x) and φ(λ)(x). Then,
we obtain an upper bound for R1 using a similar argument as in (28). Specifically,

R
(
φ(λ)(x);x

)
−R

(
φ(x);x

)
≤ R1

= Eν∗

[{
w

(0)
ν∗ (X,x)− w

(λ)
ν∗ (X,x)

}
·
{
d2
(
Y, φ(λ)(x)

)
− d2

(
Y, φ(x)

)}]
≤ 2 diam (M) · bλ(x) · d

(
φ(λ)(x), φ(x)

)
. (30)

Step 3: Converting risk difference to bias. Lastly, we convert the upper bound (30) to an upper
bound on the distance d

(
φ(λ)(x), φ(x)

)
using Assumption (C1). To this end, we begin by confirming

that

R
(
φ(λ)(x);x

)
−R

(
φ(x);x

)
= Eν∗

[
(X − µ)⊤ · Σ† · (x− µ) ·

{
d2
(
Y, φ(λ)(x)

)
− d2

(
Y, φ(x)

)}]
≤ diam (M)2 ·

(
Eν∗ ∥X − µ∥2Σ

)1/2
· ∥x− µ∥Σ

= diam (M)2 ·
√
rankΣ · ∥x− µ∥Σ

≤ Cg ·Dα
g .

Thereafter, we choose an arbitrary K ∈ N and r ∈ R+ whose values will be determined later in this
proof. Then we obtain the following inequality using the so-called peeling technique:

1
{
d
(
φ(λ)(x), φ(x)

)
> 2K · bλ(x)r

}
=

∞∑
k=K

1
{
2k · bλ(x)r < d

(
φ(λ)(x), φ(x)

)
≤ 2k+1 · bλ(x)r

}
≤

∞∑
k=K

1
{
2k · bλ(x)r < d

(
φ(λ)(x), φ(x)

)
≤ 2k+1 · bλ(x)r

}
≤

∞∑
k=K

R
(
φ(λ)(x);x

)
−R

(
φ(x);x

)
Cg ·

(
2k · bλ(x)r

)α · 1
{
d
(
φ(λ)(x), φ(x)

)
≤ 2k+1 · bλ(x)r

}
. ∵ (C1)

(31)

Moreover, we decompose the numerator in the fraction appearing in the upper bound (31) as follows:

Combining (30) with (31), we have

1
{
d
(
φ(λ)(x), φ(x)

)
> 2K · bλ(x)r

}
≤

∞∑
k=K

2 diam (M) · bλ(x) · d
(
φ(λ)(x), φ(x)

)
Cg ·

(
2k · bλ(x)r

)α · 1
{
d
(
φ(λ)(x), φ(x)

)
≤ 2k+1 · bλ(x)r

}
≤ 4 diam (M)

Cg
· bλ(x)1−r(α−1)

∞∑
k=K

1

2k(α−1)
. (32)

Note that C := 4 diamM
Cg

> 0 is a constant independent of λ. Let r = 1/(α− 1), and observe that
the upper bound in (32) becomes smaller than 1 for a sufficiently large K. Specifically,

K ≥

⌊
1

(α− 1) log 2
· log

(
4 diam (M)

Cg ·
(
1− 2−(α−1)

))⌋+1 =⇒ 4 diam (M)

Cg
·

∞∑
k=K

1

2k(α−1)
< 1.

As a result, the inequality “d
(
φ(λ)(x), φ(x)

)
> 2K0 · bλ(x)r” in the indicator function must be false,

and we conclude that
d
(
φ(λ)(x), φ(x)

)
≤ 2K0 · bλ(x)

1
α−1 .
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C.2 Variance of the empirical estimator

Lemma 2. Suppose that Assumptions (C0), (C1) and (C2) hold. For any λ ∈ R+ such that
λ ̸∈ spec

(
Σν∗

)
, it holds that

d
(
φ
(λ)
Dn

(x), φ
(λ)
ν∗ (x)

)
= OP

(
n− 1

2(α−1)

)
.

Proof of Lemma 2. Recall from the definition of λ-regularized Fréchet regression (Definition 4) and
(9) that

R
(λ)
Dn

(y;x) =
1

n

n∑
i=1

w
(λ)
Dn

(Xi, x) · d2(Yi, y) and R
(λ)
ν∗ (y;x) = E(X,Y )∼ν∗

[
w

(λ)
ν∗ (X,x) · d2(Y, y)

]
.

Additionally, we define an auxiliary function R̃n(y;x) as the “empirical risk with population weight”
such that

R̃n(y;x) :=
1

n

n∑
i=1

w
(λ)
ν∗ (Xi, x) · d2(Yi, y).

We present the rest of this proof in three steps, outlined as follows. In Step 1, we show the consistency
of φ(λ)

Dn
(x), i.e., d

(
φ
(λ)
Dn

(x), φ
(λ)
ν∗ (x)

)
= oP (1) as n → ∞. In Step 2, we define the discrepancy vari-

able Z
(λ)
n (y;x) := R

(λ)
Dn

(y;x)−R
(λ)
ν∗ (y;x) between the finite-sample and the population objectives,

cf. (35), and prove a uniform upper bound for Z(λ)
n (y;x) that holds in a neighborhood of φ(λ)

ν∗ (y;x).
Lastly, in Step 3, we utilize the peeling technique from empirical process theory to obtain the desired
rate of convergence.

Step 1: Consistency. We first claim that d
(
φ
(λ)
Dn

(x), φ
(λ)
ν∗ (x)

)
= oP (1) by an argument similar to

that used in the proof of Theorem 1. Specifcally, it suffices to show that

(S1’) R
(λ)
Dn

(y;x)−R
(λ)
ν∗ (y;x) = oP (1), and

(S2’) R
(λ)
Dn

(·;x) : M → R is asymptotically equicontinuous in probability.

Note that we already showed the asymptotic equicontinuity in the proof of Theorem 1; see (S2).
Thus, it remains to show the pointwise convergence in probability. To show (S1’), we decompose
R

(λ)
Dn

(y;x)−R
(λ)
ν∗ (y;x) as follows.

R
(λ)
Dn

(y;x)−R
(λ)
ν∗ (y;x) =

{
R

(λ)
Dn

(y;x)− R̃n(y;x)
}
+
{
R̃n(y;x)−R

(λ)
ν∗ (y;x)}

=
1

n

n∑
i=1

{
w

(λ)
Dn

(Xi, x)− w
(λ)
ν∗ (Xi, x)

}
· d2(Yi, y)︸ ︷︷ ︸

:=A
(λ)
n (y;x)

+
1

n

n∑
i=1

(
w

(λ)
ν∗ (Xi, x) · d2(Yi, y)− Eν∗

[
w

(λ)
ν∗ (Xi, x) · d2(Yi, y)

])
︸ ︷︷ ︸

:=B
(λ)
n (y;x)

.

Next, we show that A(λ)
n (y;x) and B

(λ)
n (y;x) respectively converge to 0 in probability.

• Letting µ̂n = µDn , Σ̂n = ΣDn , and Σ̂
(λ)
n = SVT(λ)(Σ̂n) for shorthand, we can write

w
(λ)
Dn

(Xi, x)− w
(λ)
ν∗ (Xi, x) = V (λ)

n (x) +X⊤
i W (λ)

n (x),

similarly to (25), where

V (λ)
n (x) = −µ̂⊤

n

[
Σ̂(λ)

n

]†
(x− µ̂n) + µ⊤

[
Σ(λ)

]†
(x− µ),

W (λ)
n (x) =

[
Σ̂(λ)

n

]†
(x− µ̂n)−

[
Σ(λ)

]†
(x− µ).

(33)

22



Since ∥µ̂n − µ∥2 = OP (n
−1/2) and ∥Σ̂(λ)

n − Σ(λ)∥ = OP (n
−1/2) (if λ ̸∈ specΣ) inde-

pendent of λ > 0, we also have |V (λ)
n (x)| = OP (n

−1/2) and ∥W (λ)
n (x)∥2 = OP (n

−1/2).
This implies that A(λ)

n (y;x) = oP (1).

• Moreover, we note that if ∥x− µ∥Σ < ∞, then the random variable w
(λ)
ν∗ (X,x) has finite

second moment

Eν∗

[
w

(λ)
ν∗ (X,x)2

]
≤ 2

(
1 + Eν∗

[∣∣∣(X − µ)⊤
[
Σ(λ)

]†
(x− µ)

∣∣∣2])
≤ 2

(
1 + Eν∗

[∥∥X − µ
∥∥2
Σ(λ) ·

∥∥x− µ
∥∥2
Σ(λ)

])
≤ 2
{
1 + p ∥x− µ∥2Σ

}
,

(34)

regardless of the value of λ > 0. When diam (M) < ∞, the product w(λ)
ν∗ (X,x) · d2(Y, y)

also has finite second moment. Since B(λ)
n (y;x) is the sample mean of IID random variables

with mean zero and finite variance, it follows that

B(λ)
n (y;x) = OP


√

Var
[
w

(λ)
ν∗ (X1, x) · d2(Y1, y)

]
n

 = OP

(
n−1/2

)
.

Step 2: Uniform control of the fluctuation in objective discrepancy. For any λ ∈ R+ and any
(x, y) ∈ Rp ×M, we let Z(λ)

n (y;x) denote the random variable defined as

Z(λ)
n (y;x) := R

(λ)
Dn

(y;x)−R
(λ)
ν∗ (y;x) (35)

We observed that

Z(λ)
n

(
y;x
)
− Z(λ)

n

(
φ
(λ)
ν∗ (x);x

)
=
{
R

(λ)
Dn

(y;x)−R
(λ)
ν∗ (y;x)

}
−
{
R

(λ)
Dn

(
φ
(λ)
ν∗ (x);x

)
−R

(λ)
ν∗

(
φ
(λ)
ν∗ (x);x

)}
=
[{

R
(λ)
Dn

(y;x)− R̃n(y;x)
}
−
{
R

(λ)
Dn

(
φ
(λ)
ν∗ (x);x

)
− R̃n

(
φ
(λ)
ν∗ (x);x

)}]
+
[{

R̃n(y;x)−R
(λ)
ν∗ (y;x)

}
−
{
R̃n

(
φ
(λ)
ν∗ (x);x

)
−R

(λ)
ν∗

(
φ
(λ)
ν∗ (x);x

)}]
=

1

n

n∑
i=1

{
w

(λ)
Dn

(Xi, x)− w
(λ)
ν∗ (Xi, x)

}
· ℓ(λ)i (y;x)︸ ︷︷ ︸

=:A
(λ)
n (y;x)

+
1

n

n∑
i=1

(
w

(λ)
ν∗ (Xi, x) · ℓ(λ)i (y;x)− Eν∗

[
w

(λ)
ν∗ (Xi, x) · ℓ(λ)i (y;x)

])
︸ ︷︷ ︸

=:B
(λ)
n (y;x)

(36)

where ℓ
(λ)
i (y;x) := d2

(
Yi, y

)
− d2

(
Yi, φ

(λ)
ν∗ (x)

)
.

Next, we analyze the asymptotic behavior of the two terms, A(λ)
n (y;x) and B

(λ)
n (y;x). Specifically,

we establish upper bounds on their magnitudes that hold uniformly over a δ-neighborhood of
φ(λ)(x) = φ

(λ)
ν∗ (x), which will be used later in Step 3 of this proof.
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• Firstly, we observe that for any δ > 0,

sup
y∈Bd

(
φ

(λ)

ν∗ (x); δ
) ∣∣A(λ)

n (y;x)
∣∣

≤ 1

n

n∑
i=1

∣∣w(λ)
Dn

(Xi, x)− w
(λ)
ν∗ (Xi, x)

∣∣ · sup
y∈Bd

(
φ

(λ)

ν∗ (x); δ
) ∣∣d2(Yi, y)− d2(Yi, φ

(λ)
ν∗ (x))

∣∣
≤ 2 diam(M) ·

{
1

n

n∑
i=1

{
|V (λ)

n (x)|+ ∥Xi∥2 ∥W (λ)
n (x)∥2

}}
× sup

y∈Bd

(
φ

(λ)

ν∗ (x); δ
) d(y, φ(λ)

ν∗ (x)
)

= OP

(
δ · n−1/2

)
, (37)

where we used the property of V (λ)
n (x) and W

(λ)
n (x) discussed in the paragraph following

(33). Since the stochastic magnitudes of V (λ)
n (x) and W

(λ)
n (x) are independent of δ, (37)

implies that there exists C(λ)
1 = C

(λ)
1 (x) > 0 such that for any δ > 0,

lim inf
n→∞

P

(
sup
y∈M

{
|A(λ)

n (y;x)| : d
(
y, φ

(λ)
ν∗ (x)

)
< δ
}
≤ C

(λ)
1 · δ · n−1/2

)
= 1. (38)

Furthermore, for any γ, δ ∈ R+ such that 0 ≤ γ < δ, let E(λ)
n (γ, δ;x) be defined as an

event such that

En(γ, δ;x) =

(
sup
y∈M

{
|A(λ)

n (y;x)| : d
(
y, φ

(λ)
ν∗ (x)

)
∈ [γ, δ)

}
≤ C

(λ)
1 · δ · n−1/2

)
. (39)

For any γ ∈ [0, δ], we have En(0, δ;x) ⊆ En(γ, δ;x), and thus,
lim infn→∞ P

(
En(γ, δ;x)

)
= 1.

• Next, we note that∣∣w(λ)
ν∗ (Xi, x) · ℓ(λ)i (y;x)

∣∣ ≤ 2 diam(M) · d
(
y, φ

(λ)
ν∗ (x)

)
·
∣∣w(λ)

ν∗ (Xi, x)
∣∣.

Observe that d
(
y, φ

(λ)
ν∗ (x)

)
≤ diam (M) < ∞ and recall that Eν∗

[
w

(λ)
ν∗ (X,x)2

]
≤

2
{
1 + p ∥x− µ∥2Σ

}
as shown in Step 1 of this proof, cf. (34). It follows from the uniform

entropy condition (C2), Theorem 2.7.11, and Theorem 2.14.2 in [55] that there exists
De = De(x) > 0 such that for all δ ∈ [0, De),

E
[
sup
y∈M

{∣∣B(λ)
n (y;x)

∣∣ : d(y, φ(λ)
ν∗ (x)

)
< δ
}]

≤ 2 diam(M) · δ · n−1/2
√
1 + p ∥x− µ∥2Σ

∫ 1

0

√
1 + logN

(
Bd(φ(λ)(x); δ), δϵ

)
dϵ

≤ C
(λ)
2 · δ · n−1/2

(40)

where C
(λ)
2 = 2 (Ce + 1) · diam (M) ·

√
1 + p ∥x− µ∥2Σ is independent of δ > 0 and

n ≥ 1.

Step 3: Concluding the proof. Lastly, we combine the results from Steps 1-2 to show that, for
any η > 0, there exist K = K(η) > 0 and N = N(η) ≥ 1 such that P

(
d
(
φ
(λ)
Dn

(x), φ
(λ)
ν∗ (x)

)
>

2K n−β
)
< η for any n ≥ N , where β > 0 is an absolute constant that will be determined later in

this proof. We prove this claim using the peeling technique, in a similar manner as we did in the
proof of Lemma 1. To avoid cluttered notation, we let ∆(x) = d

(
φ
(λ)
Dn

(x), φ
(λ)
ν∗ (x)

)
in the rest of

this proof.
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For any fixed K ∈ N and a sufficiently large n = n(K) ≥ 1 satisfying 2Kn−β < D∗ := Dg ∧De,
we observe that

P
(
∆(x) > 2K n−β

)
= P

(
∆(x) ≥ D∗

)
+ P

(
2K n−β ≤ ∆(x) < D∗

)
(41)

where we used P (A) ≤ P (Bc) + P (A ∩ B) to get the inequality. As we know that P
(
∆(x) ≥

D∗

)
= o(1) by Step 1 of this proof, we focus on showing an upper bound for the other term,

P
(
2K n−β ≤ ∆(x) < D∗

)
.

Step 3-A: Decomposition of P
(
2K n−β ≤ ∆(x) < D∗

)
. For each n, k ∈ N, we define

Fn,k =

k⋂
k′=K

E(λ)
n

(
2k

′
n−β , 2k

′+1n−β ∧D∗;x
)
,

Gn,k =

( k−1⋂
k′=K

E(λ)
n

(
2k

′
n−β , 2k

′+1n−β ∧D∗;x
))

∩ E(λ)
n

(
2kn−β , 2k+1n−β ∧D∗;x

)c
,

(42)

where we set Fn,K−1 to be the entire event space so that Gn,K =
(
Fn,K

)c
. It is worth mentioning

that Gn,k and Gn,k′ are mutually exclusive for any k ̸= k′ ≥ K, and we will use this property when
concluding the proof in Step 3-C below.

Now, we observe that

P
(
2K n−β ≤ ∆(x) < D∗

)
≤ P

(
E(λ)
n

(
2Kn−β , 2K+1n−β ∧D∗;x

)c)
+ P

((
2K n−β ≤ ∆(x) < D∗

)
∩ E(λ)

n

(
2k

′
n−β , 2k

′+1n−β ∧D∗;x
))

= P
(
Gn,K

)
+ P

((
2K n−β ≤ ∆(x) < D∗

)
∩ Fn,K

)
= P

(
Gn,K

)
+ P

((
2K n−β ≤ ∆(x) < 2K+1 n−β ∧D∗

)
∩ Fn,K

)
+ P

((
2K+1 n−β ≤ ∆(x) < D∗

)
∩ Fn,K

)

and that for every k ≥ K,

P

((
2k+1 n−β ≤ ∆(x) < D∗

)
∩Fn,k

)
≤ P

((
2k+1 n−β ≤ ∆(x) < D∗

)
∩Fn,k+1

)
+P
(
Gn,k+1

)
.

As a result, we have

P
(
2K n−β ≤ ∆(x) < D∗

)
=

∞∑
k=K

P
(
Gn,k

)
+

∞∑
k=K

P

((
2k n−β ≤ ∆(x) < 2k+1 n−β ∧D∗

)
∩ Fn,k

)
︸ ︷︷ ︸

=:Cn,k

.

(43)
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Step 3-B: Controlling Cn,k. Next, we show an upper bound for Cn,k. Suppose that 2kn−β ≤ ∆(x) <
2k+1n−β ∧D∗ and the event Fn,k occurs. Then it follows from Assumption (C1) that

Cg ·∆(x)α

≤ R
(λ)
ν∗

(
φ
(λ)
Dn

(x);x
)
−R

(λ)
ν∗

(
φ
(λ)
ν∗ (x);x

)
≤
{
R

(λ)
ν∗

(
φ
(λ)
Dn

(x);x
)
−R

(λ)
ν∗

(
φ
(λ)
ν∗ (x);x

)}
+
{
R

(λ)
Dn

(
φ
(λ)
ν∗ (x);x

)
−R

(λ)
Dn

(
φ
(λ)
Dn

(x);x
)}

︸ ︷︷ ︸
≥0

= Z(λ)
n

(
φ
(λ)
ν∗ ;x

)
− Z(λ)

n

(
φ
(λ)
Dn

(x);x
)

cf. (35)

≤
∣∣∣A(λ)

n

(
φ
(λ)
ν∗ (x);x

)∣∣∣+ ∣∣∣B(λ)
n

(
φ
(λ)
ν∗ (x);x

)∣∣∣ ∵ (36)

≤ sup
y∈M

{∣∣∣A(λ)
n

(
y;x
)∣∣∣+ ∣∣∣B(λ)

n

(
y;x
)∣∣∣ : 2k n−β ≤ d

(
y, φ

(λ)
ν∗ (x)

)
< 2k+1 n−β ∧D∗

)}
≤ C

(λ)
1 ·

(
2k+1n−β ∧D∗

)
· n−1/2 + sup

y∈M

{∣∣B(λ)
n (y;x)

∣∣ : d(y, φ(λ)
ν∗ (x)

)
< 2k+1n−β ∧D∗

}
. ∵ (39)

(44)

Therefore, we obtain that for each k ≥ K,

Cn,k = P

((
2k n−β ≤ ∆(x) < 2k+1 n−β ∧D∗

)
∩ Fn,k

)
≤ P

((
∆(x)α ≥

(
2k n−β

)α) ∩ Fn,k

)

≤
C

(λ)
1 ·

(
2k+1n−β ∧D∗

)
· n−1/2 + E

[
supy∈M

{∣∣B(λ)
n (y;x)

∣∣ : d(y, φ(λ)
ν∗ (x)

)
< 2k+1n−β ∧D∗

}]
Cg ·

(
2k n−β

)α
∵ (44) & Markov’s inequality

≤
(
C

(λ)
1 + C

(λ)
2

)
·
(
2k+1n−β ∧D∗

)
· n−1/2

Cg ·
(
2k n−β

)α ∵ (40) (45)

Step 3-C: Concluding Step 3. Combining (41), (43), and (45), we have

P
(
∆(x) > 2K n−β

)
≤

2
(
C

(λ)
1 + C

(λ)
2

)
Cg

n− 1
2+β(α−1)

∞∑
k=K

2−k(α−1)

+ P
(
∆(x) ≥ D∗

)
︸ ︷︷ ︸

=o(1) ∵ Step 1 of this proof

+

∞∑
k=K

P
(
Gn,k

)
.

Moreover, Gn,k are mutually exclusive, and thus,
∞∑

k=K

P
(
Gn,k

)
= P

( ∞⋃
k=K

Gn,k

)
= P

(( ∞⋃
k=K

E(λ)
n

(
2kn−β , 2k+1n−β ∧D∗;x

))c
)

→ 0 ∵ (39)

Finally, we obtain the desired result by letting β = 1
2(α−1) .

D Proof of Theorem 3

In this section, we prove Theorem 4 that establishes an upper bound on d
(
φ
(λ)

D̃n
(x), φ

(λ)
Dn

(x)
)
. This

section is organized as follows. Firstly, in Section D.1, we present several useful results from matrix
perturbation theory as lemmas. Next, in Section D.2, we provide a key lemma (Lemma 6) that
establishes the stability of the weight function when there is covariate noise. Lastly, in Section D.3,
we state and prove Theorem 4, from which Theorem 3 can be easily derived.
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D.1 Useful lemmas

Definition 7. Let n, p ∈ N and let M ∈ Rn×p. The row projection matrix for M , denoted by
Πrow

M ∈ Rp×p, is a matrix such that

Πrow
M := M † ·M . (46)

and the column projection matrix for M , denoted by Πcol
M ∈ Rn×n, is a matrix such that

Πcol
M := M ·M †. (47)

We recall from (6) that for any λ ∈ R+, the singular value thresholding (SVT) operator SVT(λ) is
defined such that

M =

min{n,p}∑
i=1

si · uiv
⊤
i is a SVD 7→ SVT(λ)(M) =

min{n,p}∑
i=1

si · 1{si > λ} · uiv
⊤
i .

In the rest of this section, we let M (λ) := SVT(λ)(M) for shorthand.
Lemma 3 (Properties of the row/column projection matrices). Let n, p ∈ N, and M ∈ Rn×p. For
any λ ∈ R+, the following statements are true.

1. Πrow
M(λ) defines a projection in Rp and rankΠrow

M(λ) = rankM (λ).

2. Πcol
M(λ) defines a projection in Rn and rankΠcol

M(λ) = rankM (λ).

3. MΠrow
M(λ)M

† = Πcol
M(λ) and M †Πcol

M(λ)M = Πrow
M(λ) .

Proof. Let r = rankM and consider a compact singular value decomposition (SVD) of M :

M =

r∑
i=1

si · uiv
⊤
i

where s1, . . . , sr are non-zero singular values of M . Noticing that

M (λ) = SVT(λ)(M) =

r∑
i=1

1{si > λ} · uiv
⊤
i

and that M † =
∑r

i=1 s
−1
i · viu⊤

i , the three conclusions of the lemma follow straightforwardly from
the orthonormality of singular vectors.

• Πrow
M(λ) =

∑r
i=1 viv

⊤
i · 1{si > λ} is the projection onto the row space of M (λ).

• Πcol
M(λ) =

∑r
i=1 uiu

⊤
i · 1{si > λ} is the projection onto the column space of M (λ).

• Due to the orthonormality of singular vectors,

MΠrow
M(λ)M

† =

(
r∑

i=1

si · uiv
⊤
i

)(
r∑

i=1

viv
⊤
i · 1{si > λ}

)(
r∑

i=1

s−1
i · viu⊤

i

)

=

r∑
i=1

uiu
⊤
i · 1{si > λ}

= Πcol
M(λ) ,

and likewise, M †Πcol
M(λ)M = Πrow

M(λ) .

In addition, we collect two classical results from matrix perturbation theory and state them as lemmas.
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Lemma 4 ([50, Theorem 3.2]). Let X,Z ∈ Rn×p. Then the following equation is true:

Z† −X† = −Z†Πcol
Z (Z −X)Πrow

X X† +Z†Πcol
Z Πcol

X

⊥ −Πrow
Z

⊥Πrow
X X† (48)

where Πcol
X

⊥
= In −Πcol

X and Πrow
Z

⊥ = Ip −Πrow
Z .

Lemma 5 ([15, Theorems 2.4 & 2.5]). Let X,Z ∈ Rn×p. Then∥∥Πcol
Z −Πcol

X

∥∥ ≤ max
{∥∥∥(Z −X)X†

∥∥∥ ,∥∥∥(Z −X)Z†
∥∥∥} . (49)

Moreover, if rankX = rankZ, then∥∥Πcol
Z −Πcol

X

∥∥ ≤ min
{∥∥∥(Z −X)X†

∥∥∥ ,∥∥∥(Z −X)Z†
∥∥∥} . (50)

D.2 Stability of the weights under (small) perturbation in covariates

Let Dn = {(xi, yi) ∈ Rp ×M : i ∈ [n]} and D̃n = {(zi, yi) ∈ Rp ×M : i ∈ [n]} be two sets in
Rp ×M. We may identify these sets with their empirical distributions. Recall the definition of w(λ)

ν

from (9): for any probability measure ν on Rp ×M, any λ ∈ R+, and any x, x′ ∈ Rp,

w(λ)
ν (x′, x) = 1 + (x′ − µν)

⊤
[
SVT(λ)

(
Σν

)]†
(x− µν)

where µν = E(X,Y )∼ν(X) and Σν = Var(X,Y )∼ν(X), cf. (7). We define the weight vectors induced
by Dn and D̃n as follows: for any λ ∈ R+ and any x ∈ Rp,

w⃗
(λ)
Dn

(x) :=
[
w

(λ)
Dn

(x1, x) · · · w
(λ)
Dn

(xn, x)
]
∈ Rn,

w⃗
(λ)

D̃n
(x) :=

[
w

(λ)

D̃n
(z1, x) · · · w

(λ)

D̃n
(zn, x)

]
∈ Rn.

(51)

Lemma 6 (Stability of weights). Let Dn = {(xi, yi) ∈ Rp ×M : i ∈ [n]} and D̃n =

{(zi, yi) ∈ Rp ×M : i ∈ [n]}. Let X = [x1 · · · xn]
⊤ ∈ Rn×p and Z = [z1 · · · zn]

⊤ ∈
Rn×p. For any λ ∈ R+, if x ∈ Rp satisfies x− µDn ∈ rowsp

(
Xctr

)
, then∥∥w⃗(λ)

D̃n
(x)− w⃗

(λ)
Dn

(x)
∥∥ ≤

√
n · ∥Z −X∥

min
{
σ(λ)(Xctr), σ(λ)(Zctr)

} ·
(
2 ·
∥∥x− µDn

∥∥
ΣDn

+ 1
)

(52)

where Xctr =
(
In − 1

n1n1
⊤
n

)
X and σ(λ)(X) := inf{σi(X) > λ : i ∈ N} (likewise for Z).

Proof of Lemma 6. This proof consists of three steps. In Step 1, we express the weight discrepancy
w⃗

(λ)

D̃n
(x) − w⃗

(λ)
Dn

(x) as a sum of matrix products using projections. In Step 2, we establish upper
bounds on the norm of the expression obtained in Step 1. In Step 3, we collect intermediate results
together and conclude the proof.

Step 1: Decomposition of the weight discrepancy. First of all, we rewrite w⃗
(λ)

D̃n
(x)− w⃗

(λ)
Dn

(x) in
a compact matrix representation that is presented in (60) at the end of this step. To this end, we begin
by observing that

µDn =
1

n
X⊤1n, and ΣDn =

1

n

(
X − 1nµ

⊤
Dn

)⊤ (
X − 1nµ

⊤
Dn

)
=

1

n
X⊤

ctrXctr. (53)

For given λ ∈ R+, we let X(λ)
ctr := SVT(λ)(Xctr), and observe that

Σ
(λ)
Dn

= Πrow

X
(λ)
ctr

·
(
1

n
X⊤

ctrXctr

)
·Πrow

X
(λ)
ctr

=
1

n
·X(λ)

ctr

⊤
·X(λ)

ctr . (54)

Then it follows that[
Σ

(λ)
Dn

]†
= n ·

[
X

(λ)
ctr

⊤
·X(λ)

ctr

]†
= n ·

[
X

(λ)
ctr

]†
·
[
X

(λ)
ctr

⊤
]†

= n ·Πrow

X
(λ)
ctr

·X†
ctr ·

(
X⊤

ctr

)†
·Πrow

X
(λ)
ctr

.
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Therefore, we have

w⃗
(λ)
Dn

(x) = 1n +
(
X − 1nµ

⊤
Dn

)
·
[
Σ

(λ)
Dn

]†
· (x− µDn

)

= 1n + n ·Xctr ·Πrow

X
(λ)
ctr

·X†
ctr ·

(
X⊤

ctr

)†
·Πrow

X
(λ)
ctr

· (x− µDn
)

= 1n + n ·Πcol

X
(λ)
ctr

·
(
X⊤

ctr

)†
·Πrow

X
(λ)
ctr

· (x− µDn
), (55)

where the equality in the last line follows from Lemma 3: XctrΠ
row

X
(λ)
ctr

X†
ctr = Πcol

X
(λ)
ctr

.

Likewise, we repeat the above for D̃n and Z to write

µD̃n
=

1

n
Z⊤1n and ΣD̃n

=
1

n
Z⊤

ctrZctr.

Then, we obtain an expression for w⃗(λ)

D̃n
(x) in a similar form to (55), namely,

w⃗
(λ)

D̃n
(x) = 1n + n ·Πcol

Z
(λ)
ctr

·
(
Z⊤

ctr

)†
·Πrow

Z
(λ)
ctr

· (x− µD̃n
). (56)

Thereafter, we define cx, c̃x ∈ Rn×1 so that

cx = ∥x− µDn
∥ΣDn

=

(
1√
n
X⊤

ctr

)†

· (x− µDn
) and

c̃x = ∥x− µDn
∥ΣD̃n

=

(
1√
n
Z⊤

ctr

)†

·
(
x− µD̃n

)
.

(57)

Then we observe that for any x ∈ Rp,

n·Πrow

X
(λ)
ctr

·(x−µDn
) = n·Πrow

X
(λ)
ctr

· 1√
n
X⊤

ctr ·
(

1√
n
X⊤

ctr

)†

·(x−µDn
) =

√
n·Πrow

X
(λ)
ctr

·X⊤
ctr ·cx. (58)

Likewise,

n ·Πrow

Z
(λ)
ctr

·
(
x−µD̃n

)
= n ·Πrow

Z
(λ)
ctr

· 1√
n
Z⊤

ctr ·
(

1√
n
Z⊤

ctr

)†

·(x−µD̃n
) =

√
n ·Πrow

Z
(λ)
ctr

·Z⊤
ctr · c̃x. (59)

Consequently, for any x ∈ Rp, we obtain from (55) and (56) with aid of (58) and (59) that

w⃗
(λ)

D̃n
(x)− w⃗

(λ)
Dn

(x)

=
√
n ·Πcol

Z
(λ)
ctr

·
(
Z⊤

ctr

)†
·Πrow

Z
(λ)
ctr

·Z⊤
ctr · c̃x −

√
n ·Πcol

X
(λ)
ctr

·
(
X⊤

ctr

)†
·Πrow

X
(λ)
ctr

·X⊤
ctr · cx

=
√
n ·Πcol

Z
(λ)
ctr

· c̃x −
√
n ·Πcol

X
(λ)
ctr

· cx ∵ Lemma 3

=
√
n ·Πcol

Z
(λ)
ctr

· (c̃x − cx) +
√
n ·
(
Πcol

Z
(λ)
ctr

−Πcol

X
(λ)
ctr

)
· cx. (60)

By triangle inequality, we obtain the following upper bound:∥∥∥w⃗(λ)

D̃n
(x)− w⃗

(λ)
Dn

(x)
∥∥∥ ≤

√
n ·
∥∥∥Πcol

Z
(λ)
ctr

· (c̃x − cx)
∥∥∥+√

n ·
∥∥∥(Πcol

Z
(λ)
ctr

−Πcol

X
(λ)
ctr

)
· cx
∥∥∥ . (61)

Step 2: Upper bounding the norm. Next, we establish separate upper bounds for the two terms in
(61).

(1) The first term in (61). First of all, we observe from the definition of cx and c̃x, cf. (57), that

c̃x − cx =

(
1√
n
Z⊤

ctr

)†

·
(
x− µD̃n

)
−
(

1√
n
X⊤

ctr

)†

· (x− µDn
)

=
√
n ·
(
Z⊤

ctr

† −X⊤
ctr

†) · (x− µDn
) +

√
n ·
[
Z⊤

ctr

]†
·
(
µD̃n

− µDn

)
.
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Then we can upper bound the first term in (61) as follows:∥∥∥Πcol

Z
(λ)
ctr

· (c̃x − cx)
∥∥∥ =

√
n·
∥∥∥Πcol

Z
(λ)
ctr

·
(
Z⊤

ctr

† −X⊤
ctr

†) · (x− µDn)
∥∥∥+√

n·
∥∥∥∥Πcol

Z
(λ)
ctr

·
[
Z⊤

ctr

]†
·
(
µD̃n

− µDn

)∥∥∥∥ .
(62)

Next, we consider the orthogonal decomposition of x− µDn :

x−µDn = Πrow
Xctr

(
x−µDn

)
+Πrow

Xctr

⊥ ·
(
x−µDn

)
=

1√
n
X⊤

ctr · cx +Πrow
Xctr

⊥ ·
(
x−µDn

)
. (63)

If x− µDn ∈ rowsp (Xctr), then we obtain the following upper bound for the first term in (62):
√
n ·
∥∥∥Πcol

Z
(λ)
ctr

·
(
Z⊤

ctr

† −X⊤
ctr

†) · (x− µDn
)
∥∥∥

≤
∥∥∥Πcol

Z
(λ)
ctr

·
(
Z⊤

ctr

† −X⊤
ctr

†) ·X⊤
ctr · cx

∥∥∥
+
√
n ·
∥∥∥Πcol

Z
(λ)
ctr

·
(
Z⊤

ctr

† −X⊤
ctr

†) ·Πrow
Xctr

⊥ ·
(
x− µDn

)︸ ︷︷ ︸
=0

∥∥∥ ∵ (63)

≤
∥∥∥Πcol

Z
(λ)
ctr

·
{
−Z⊤

ctr

† ·Πrow
Zctr

·
(
Z⊤

ctr −X⊤
ctr

)
·Πcol

Xctr
·X⊤

ctr

†} ·X⊤
ctr · cx

∥∥∥ ∵ Lemma 4

≤
∥∥∥[Z(λ)

ctr

⊤]†∥∥∥ · ∥∥∥Πrow
Zctr

· (Z −X)
⊤ ·Πrow

1⊥
n

·Πcol
Xctr

∥∥∥ · ∥cx∥
≤ ∥Z −X∥

σ(λ) (Zctr)
· ∥cx∥ .

Similarly, the second term in (62) can be bounded by
√
n ·
∥∥∥∥Πcol

Z
(λ)
ctr

·
[
Z⊤

ctr

]†
·
(
µD̃n

− µDn

)∥∥∥∥ ≤ 1√
n
·
∥∥∥[Z(λ)

ctr

⊤]†∥∥∥ · ∥∥1⊤
n · (Z −X)

∥∥
≤ 1√

n
· ∥Z −X∥
σ(λ) (Zctr)

· ∥1n∥ .

All in all, we obtain
√
n ·
∥∥∥Πcol

Z
(λ)
ctr

· (c̃x − cx)
∥∥∥ ≤ ∥Z −X∥

σ(λ) (Zctr)
·
(√

n · ∥cx∥+ ∥1n∥
)

(64)

(2) The second term in (61). Letting E(λ) := Z
(λ)
ctr −X

(λ)
ctr , we observe that∥∥∥Πcol

Z
(λ)
ctr

−Πcol

X
(λ)
ctr

∥∥∥ ≤ max
{∥∥∥E(λ) ·X(λ)

ctr

†∥∥∥, ∥∥∥E(λ) ·Z(λ)
ctr

†∥∥∥} ∵ Lemma 5

≤
∥∥∥E(λ)

∥∥∥ ·max

{∥∥∥X(λ)
ctr

†∥∥∥, ∥∥∥Z(λ)
ctr

†∥∥∥}
≤ ∥Z −X∥

min
{
σ(λ)(Xctr), σ(λ)(Zctr)

} .
All in all, we obtain the following upper bound:
√
n
∥∥∥(Πcol

Z
(λ)
ctr

−Πcol

X
(λ)
ctr

)
· cx
∥∥∥ ≤

∥∥∥Πcol

Z
(λ)
ctr

−Πcol

X
(λ)
ctr

∥∥∥·∥cx∥ ≤ ∥Z −X∥
min

{
σ(λ)(Xctr), σ(λ)(Zctr)

} ·√n·∥cx∥ .

(65)

Step 3: Concluding the proof. We conclude this proof by inserting the upper bounds (64) and (65)
from Step 2 into the upper bound (61) in Step 1. Specifically, we obtain∥∥w⃗(λ)

D̃n
(x)− w⃗

(λ)
Dn

(x)
∥∥ ≤ ∥Z −X∥

σ(λ) (Zctr)
·
(√

n · ∥cx∥+ ∥1n∥
)
+

∥Z −X∥
min

{
σ(λ)(Xctr), σ(λ)(Zctr)

} ·
√
n · ∥cx∥

≤ ∥Z −X∥
min

{
σ(λ)(Xctr), σ(λ)(Zctr)

} ·
(
2
√
n · ∥cx∥+ ∥1n∥

)
.

Lastly, we note that ∥cx∥ =
√
(x− µDn

)
⊤
Σ†

Dn
(x− µDn

) =
∥∥x−µDn

∥∥
ΣDn

and ∥1n∥ =
√
n.
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D.3 Completing the proof of Theorem 3

Recall that given a set Dn = {(xi, yi) : i ∈ [n]}, we let XDn
:= [x1 · · · xn]

⊤ ∈ Rn×p. In
addition, we let

∀y ∈ M, d⃗2Dn
(y) :=

[
d2(y1, y) · · · d2(yn, y)

]
∈ Rn. (66)

Recall that we let X = XDn
and Z = XD̃n

for shorthand, and further, we let Xctr =
(
In −

1
n1n1

⊤
n

)
X and Zctr =

(
In − 1

n1n1
⊤
n

)
Z denote the ‘row-centered’ matrices. Here we present and

prove the complete version of Theorem 3.
Theorem 4 (De-noising covariates). Suppose that Assumptions (C0) and (C1) hold. For any λ ∈ R+,
if x ∈ µDn

+ rowspXctr and

∥x− µDn∥ΣDn
≤ 1

2

(
Cg ·Dα

g

2 diam (M)
·
min

{
σ(λ)(Xctr), σ

(λ)(Zctr)
}

∥Z −X∥
− 1

)
, (67)

then

d
(
φ
(λ)

D̃n
(x), φ

(λ)
Dn

(x)
)

≤

(
∥Z −X∥

min
{
σ(λ)(Xctr), σ(λ)(Zctr)

} ·
2 ·
∥∥x− µDn

∥∥
ΣDn

+ 1

Cg
·
∥∥d⃗2Dn

(φ̃n)
∥∥+ ∥∥d⃗2Dn

(φn)
∥∥

√
n

) 1
α

.

(68)

Proof of Theorem 4. First of all, we recall from (51) that

w⃗
(λ)
Dn

(x) =
[
w

(λ)
Dn

(x1, x) · · · w
(λ)
Dn

(xn, x)
]

and w⃗
(λ)

D̃n
(x) =

[
w

(λ)

D̃n
(z1, x) · · · w

(λ)

D̃n
(zn, x)

]
.

In addition, recall that we let for any y ∈ M,

d⃗2Dn
(y) =

[
d2(y1, y) · · · d2(yn, y)

]
∈ Rn.

Thereafter, we observe that for any y ∈ M and any x ∈
(
µDn + rowspXctr

)
,∣∣∣R(λ)

D̃n
(y;x)−R

(λ)
Dn

(y;x)
∣∣∣ = 1

n

∣∣∣∣∣
n∑

i=1

(
w

(λ)

D̃n
(zi, x)− w

(λ)
Dn

(xi, x)
)
· d2(yi, y)

∣∣∣∣∣
=

1

n

∣∣∣〈w⃗(λ)

D̃n
(x)− w⃗

(λ)
Dn

(x), d⃗2Dn
(y)
〉∣∣∣

(a)

≤ 1

n

∥∥∥w⃗(λ)

D̃n
(x)− w⃗

(λ)
Dn

(x)
∥∥∥ · ∥∥∥d⃗2Dn

(y)
∥∥∥

(b)

≤ ∥Z −X∥
min

{
σ(λ)(Xctr), σ(λ)(Zctr)

} ·
(
2 ·
∥∥x− µDn

∥∥
ΣDn

+ 1
)
·
∥∥d⃗2Dn

(y)
∥∥

√
n

(69)

where (a) is due to Cauchy-Schwarz inequality, and (b) follows from Lemma 6.

Using shorthand notation Rn = R
(λ)
Dn

, R̃n = R
(λ)

D̃n
, φn = φ

(λ)
Dn

(x), and φ̃n = φ
(λ)

D̃n
(x), we observe

that

Rn(φ̃n)−Rn(φn)

= Rn(φ̃n)− R̃n(φ̃n) + R̃n(φ̃n)−Rn(φn)

(a)

≤ Rn(φ̃n)− R̃n(φ̃n) + R̃n(φn)−Rn(φn)

(b)

≤ ∥Z −X∥
min

{
σ(λ)(Xctr), σ(λ)(Zctr)

} ·
(
2 ·
∥∥x− µDn

∥∥
ΣDn

+ 1
)
·
∥∥d⃗2Dn

(φ̃n)
∥∥+ ∥∥d⃗2Dn

(φn)
∥∥

√
n

(70)
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where (a) follows from the optimality of φ̃n, i.e., R̃n(φn) ≥ R̃n(φ̃n), and (b) is due to (69).

Finally, we note that if

∥x− µDn∥ΣDn
≤ 1

2

(
Cg ·Dα

g

2 diam (M)
·
min

{
σ(λ)(Xctr), σ

(λ)(Zctr)
}

∥Z −X∥
− 1

)
,

then the upper bound in (70) certifies that Rn(φ̃n) − Rn(φn) < Cg · Dα
g . Thus, we can use

Assumption (C1) to convert the risk bound (70) to derive a distance bound between the minimizers:

d (φ̃n, φn) ≤
(
Rn(φ̃n)−Rn(φn)

Cg

) 1
α

,

which completes the proof.

E Further details on the experiments

Experimental setup in Section 5. We consider combinations of p ∈ {150, 300, 600} and n ∈
{100, 200, 400}. The datasets Dn = {(Xi, Yi) : i ∈ [n]} and D̃n = {(Zi, Yi) : i ∈ [n]} are
generated as follows.

(True covariate X) Let Xi ∼ Np

(
0p,Σ

)
be IID multivariate Gaussian with mean 0p and covariance

Σ such that spec (Σ) = {κj > 0 : j ∈ [p]} is an exponentially decreasing sequence such that
tr (Σ) =

∑p
j=1 κj = p. To be specific, for each p, we consider an exponentially decreasing sequence

1 = a1 > · · · > ap = 10−3, and then set κj = p · aj/(
∑

j′=1 aj′) for each j ∈ [p]. Note that∑⌊p/3⌋
j=1 κj

/∑p
j′=1 κj′ ≈ 0.9, and thus, Σ is effectively low-rank.

(Noisy covariate Z) For the error-prone covariate Z = X + ε, we consider two scenarios εj
IID∼

N
(
0, σ2

ε

)
and εj

IID∼ Laplace
(
0, σε

)
. Note that in this setting, we have the signal-to-noise ratio

E(∥X∥22)/E(∥ε∥22) = 1/σ2
ε . We set σ2

ε = 0.052.

(Response Y ) Given X = x, let Y be the distribution function of N
(
µα,β(x) + η, τ2

)
, where

• µα,β(x) = α+ β⊤x with α = 1 and β = p−1/2 · 1p,

• η ∼ N
(
0, σ2

η

)
,

• τ2 ∼ IG(s1, s2), an inverse gamma distribution with shape s1 and scale s2.

We note that E(τ2) = s2
s1−1 and Var(τ2) =

s22
(s1−1)2(s1−2) . In particular, when τ2 = 0, this setting

corresponds to the classical linear regression model for scalar responses. We set σ2
η = 0.52, and

(s1, s2) = (18, 17). In this setting, we have

• E
(
µα,β(X)

)
= 1 and Var

(
µα,β(X)

)
= β⊤Σβ ≈ 1,

• E(τ2) = 1 and Var(τ2) = 0.252.

(Tuning parameter λ) For simplicity, we chose a universal threshold value as

λ̂n = argmin
λ∈Λ

MSPE(φ
(λ)

D̃n
),

where Λ is a fine grid on
(
0,
√

λ1 · p/n
)
. Then the same threshold λ̂n was used to evaluate

Bias2(φ
(λ)

D̃(b)
(x)), Var(φ(λ)

D̃(b)
(x)), and MSE(φ

(λ)

D̃(b)
(x)) for all b = 1, . . . , B. Therefore, we claim

that the performance of the SVT estimator reported in Table 1 has further room for improvement
if one substitute λ̂

(b)
n = argminλ∈Λ MSPE(φ

(λ)

ν(b)) for each Monte Carlo experiment. Although
suboptimal results are reported, we note that the proposed SVT outperforms both the oracle estimator
and the naive EIV estimator in our simulation study. In practice, one may employ cross-validation for
better performance. For the MSPE in Table 1, we reported minλ∈Λ MSPE(φ

(λ)

D̃n
).
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Evaluation metrics: bias and variance. We evaluate the accuracy and efficiency of the Fréchet
regression function estimator using the bias and the variance. For any given x, we define

Biasx
(
φ(λ)
ν

)
:= dW

(
φ(λ)
ν (x), φ

(0)
ν∗ (x)

)
and Varx

(
φ(λ)
ν

)
:=

1

B

B∑
b=1

dW

(
φ
(λ)

ν(b)(x), φ
(λ)
ν (x)

)2
,

where ν ∈ {Dn, D̃n} and φ
(λ)
ν (x) := argminy

∑B
b=1 dW

(
φ
(λ)

ν(b)(x), y
)2

is the Fréchet mean of

φ
(λ)

ν(1)(x), . . . , φ
(λ)

ν(B)(x). Note that these definitions are a generalization of the standard bias and
variance of the regression function estimator in Euclidean spaces. We evaluate the global performance
of the estimator by considering a fixed set of evaluation points, GM = {xm : m = 1, . . . ,M}, and
compute

Bias2
(
φ(λ)
ν

)
:=

1

M

M∑
m=1

Bias2xm

(
φ(λ)
ν

)
and Var

(
φ(λ)
ν

)
:=

1

M

M∑
m=1

Varxm

(
φ(λ)
ν

)
.

In our experiment, we generate the set GM by drawing x1, . . . , xM IID from the same distribution as
X , with M = 500.

Additional experiment with linear regression models We also conducted an additional experiment
for the standard linear regression models with three different metric metrics.

(Model) The linear regression model for (X,Y ) ∈ Rp × Rd is defined as Y = α + Xβ + η and
the covariate is contaminated as Z = X + ε. We generate X using the effective low-rank model
with a geometrically decaying spectrum and condition number 103 (see Appendix E in the original
submission).

(Parameters) Here, we let α = 1d + 0.1 · g, β = d−1/2 · 1p×d + 0.1 ·G, η ∼ N (0, 0.52 · Id) and
ε ∼ N (0, 0.52 · Ip), with g, G being standard Gaussians.

(a) L1 (b) L2 (c) L∞

Figure 3: Normalized mean squared prediction error (NMSPE) versus threshold λ for vector-valued linear
regression with three different metrics for Y: (a) ℓ1-metric; (b) ℓ2-metric; and (c) ℓ∞-metric. [SVT]: the
regularized Fréchet regression estimator φ(λ)

D̃n
with best NMSPE; [EIV]: the unregularized Fréchet regression

estimator φ(0)

D̃n
with errors-in-variables covariates Z; [REF]: the unregularized Fréchet regression estimator

φ
(0)
Dn

with error-free covariates X (oracle).
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