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Abstract

Functional constrained optimization (FCO) has emerged as a powerful tool for
solving various machine learning problems. However, with the rapid increase in
applications of neural networks in recent years, it has become apparent that both
the objective and constraints often involve nonconvex functions, which poses sig-
nificant challenges in obtaining high-quality solutions. In this work, we focus on
a class of nonconvex FCO problems with nonconvex constraints, where the two
optimization variables are nonlinearly coupled in the inequality constraint. Lever-
aging the primal-dual optimization framework, we propose a smoothed first-order
Lagrangian method (SLM) for solving this class of problems. We establish the
theoretical convergence guarantees of SLM to the Karush-Kuhn-Tucker (KKT)
solutions through quantifying dual error bounds. By establishing connections be-
tween this structured FCO and equilibrium-constrained nonconvex problems (also
known as bilevel optimization), we apply the proposed SLM to tackle bilevel opti-
mization oriented problems where the lower-level problem is nonconvex. Numer-
ical results obtained from both toy examples and hyper-data cleaning problems
demonstrate the superiority of SLM compared to benchmark methods.

1 Introduction

In this paper, we consider a structured constrained optimization framework that has broad applica-
tions in diverse machine learning problems. The goal of this problem is to minimize the objective
function using two blocks of optimization variables which are coupled in the functional constraint.
More formally, we express this class of nonlinear constrained programming problems as follows:

min
x∈X ,y

f(x, y), s.t. g(x, y)− g∗(x) ≤ δ (1)

where feasible set X is convex and compact, the objective function f(x, y) is smooth and noncon-
vex, constraint g(x, y) is smooth and nonconvex and it also satisfies the Polyak-Łojasiewicz (PŁ)
condition with respect to (w.r.t.) y, g∗(x) , miny g(x, y) (which is also called value function [1])
is obtained by minimizing g(x, y) over y, and constant δ > 0.

When δ = 0, problem (1) reduces to the classic bilevel optimization (BO) problem (aka mathemati-
cal programs with equilibrium constraints [2]). More specifically, it takes the form of

min
x∈X ,y

f(x, y), s.t. y ∈ S(x) , argmin
y′

g(x, y′), (2)

where f(x, y) and g(x, y′) denote the upper-level (UL) and lower-level (LL) objective functions,
S(x) represents the set that contains the global optimal solutions of the LL problem w.r.t. the block-
y′. This BO formulation has been shown to be a useful framework for modeling various multi-task
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Table 1: Comparison of existing related representative works on nonconvex functional constrained and/or
bilevel optimization, where non-singleton: the existence of multiple global optimal solutions at the LL problem,
oracle: requirements of accessing first-order and/or second-order derivative of either UL or LL loss functions,
LL/C: the property that the LL objective funciton/constraint satisfies in problem (2) or (1), Õ: denotes that
the iteration complexity hides the dependence on the hyperparameters, e.g., δ, cvx: convex, ncvx: nonconvex,
scvx: strongly convex.

Algorithms Problem Opt. Framework Oracle Non-Singleton LL/C Rate

ConEx [12] primal-dual first-order X ncvx O
(

1

ϵ3/2

)
ITD/AID [13] (2) ITD/AID second-order scvx O

(
1
ϵ

)
F2SA [14] (2) penalty first-order scvx O

(
1

ϵ3/2

)
BOME [15] (2) penalty first-order PŁ O

(
1
ϵ3

)
X O

(
1
ϵ4

)
V-PBGD [16] (2) penalty first-order X PŁ Õ

(
1
ϵ

)
SLM (1) primal-dual first-order X PŁ Õ

(
1
ϵ

)
machine learning problems, e.g., hyper-parameter optimization [3, 4], actor-critic schemes in rein-
forcement learning [5], meta-learning [6, 7], AUC maximization [8], distributed bilevel optimization
[9, 10, 11], etc. In these scenarios, the decision/optimization variables are coupled in both levels of
the minimization problems and the evaluation of the UL gradient depends on the optimal solution
at the LL. Consequently, it is necessary to optimize the UL and LL loss functions jointly w.r.t. the
block variables x and y.

1.1 Related Work

Bilevel Optimization. Motivated by the numerous applications of BO, developing the efficient
solvers for handling these problems has attracted great interest in the optimization community. There
are two major directions: 1) focus on solving the BO problem in a general manner; 2) improve the
computation or iteration complexity of the BO algorithms. It has been shown in [17] that a first-order
method can find the global optimal solution when the UL objective function is strongly convex and
the LL problem is convex. However, the strong convexity assumption restricts the applicability of
the algorithm to many real-world machine learning problems. In contrast, some recent works have
considered the case where the UL objective function is nonconvex and have shown that, given an
oracle that computes the Jacobian and the inverse of Hessian matrices of the LL objective function,
the complexity of finding an ϵ-stationary point is O(ϵ−1) [18, 13], which is the same as that of
gradient descent. But this setting is still restrictive as they still assume that the LL problem is
strongly convex.

Non-Singleton at the LL. When the LL problem is not strongly convex, the computation of the UL
gradient ∇f(x,S(x)) can become ill-posed due to the presence of multiple optimal solutions. To
address this issue, a new metric called (δ, ϵ)-Goldstein stationary point was introduced in [19], which
aims to capture the discontinuity of ∇f(x,S(x)). Under the assumption that f(x, ·) and g(x, ·) are
convex, it was shown that an inexact gradient-free method can find the Goldstein stationary point
at a rate of O(δ−1ϵ−4). In addition to the new metric used for theoretical convergence analysis,
the concept of Hölderian error bound was employed in [20], which imposes further conditions on
the shape of the LL objective function. For a class of simple BO problems where only one set of
block variables needs to be optimized, the conditional gradient-based bilevel optimization (CG-BiO)
algorithm proposed in [20] was shown to converge to stationary points at a rate of O(ϵ−1) or O(ϵ−2),
depending on whether the Hölderian error bound holds.

In [21], the author considered the case of a nonconvex LL objective function but with an assump-
tion that eliminates the presence of zero eigenvalues of the LL Hessian matrix. Another property
used to characterize the landscape of the LL function is the PŁ condition. Based on the formulation
in (1), researchers [16, 15] developed penalty methods for solving BO problems and discussed the
relationship between local/global optimal solutions of the penalized problem formulation and the
constrained problem (2) (i.e., when δ = ϵ in (1)) . It was shown that the value-gap-based penalty-
based bilevel gradient descent (V-PBGD) algorithm [16] can converge to stationary points of the
reformulated single-level problem. Additionally, under the assumption of the constant rank con-
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straint quantification condition, the bilevel optimization made easy (BOME) algorithm developed in
[15] can achieve Karush-Kuhn-Tucker (KKT) points of the BO problem in (2).

Computational Issue. Another line of research focuses on reducing the computational complexity
of implementing BO optimization algorithms. As mentioned earlier, computing the UL gradient
can be computationally expensive. Existing works have employed strategies such as the Neumann
series for calculating the inverse of Hessian matrices [18], or utilized reverse-mode iterative differen-
tiation (ITD) and approximate implicit differentiation (AID) techniques [22, 13] for hypergradient
computation. However, these strategies introduce a double-loop structure in the algorithm design,
requiring users to specify hyperparameters for the inner loop subroutine. Subsequently, single-loop
BO algorithms have been developed [23, 24], which alleviate the burden of hyperparameter tun-
ing in the inner loop. Nevertheless, they still require the computation of the Jacobian matrix and
Hessian-vector product.

To circumvent these computations, some existing works reformulate the BO problem as a single-
level functional constrained optimization (FCO) problem, as shown in (1), and apply well-
established constrained optimization techniques, such as primal-dual methods, for solving the BO
problem using only gradients. In [25], it was shown that when the UL problem is strongly convex
and the LL problem is convex, the primal-dual algorithm can find the global optimal solution at a
rate of O(ϵ−1/2). For the case where the UL problem is nonconvex, the fully first-order stochas-
tic approximation (F2SA) method proposed in [14] can find an ϵ-stationary solution at a rate of
O(ϵ−3/2) when the LL problem is strongly convex. Similarly, penalty methods [26, 16] also just
require the computation of UL and LL gradients while achieving the desired optimization results.

Functional Constrained Optimization. The formulation based on function values establishes a
connection between FCO and BO [1, 27, 28]. By leveraging existing well-developed constrained
optimization methods [12, 29, 30], efficient solutions to the BO problem can still be obtained. When
the block variables x and y are linearly coupled, the alternating direction method of multipliers
(ADMM) [31] has emerged as a successful approach by decoupling the optimization process into
subproblems. Recent advancements in smoothed augmented Lagrangian methods [30, 32, 33] have
improved the convergence rates for solving nonconvex linearly constrained problems. For nonlin-
ear functional constraints with one block of variables, the constraint extrapolation (ConEx) method
[12] has shown promising results in finding KKT points with a convergence rate of O(ϵ−3/2) for
nonconvex smooth functions. Besides, the properties of PŁ functions studied in min-max optimiza-
tion problems [34] are expected to be useful in demonstrating the continuity of ∇f(x,S(x)) for
BO problems within the framework of primal-dual methods. A comparison between our work and
closely related previous works on FCO and BO is shown in Table 1.

1.2 Main Contributions of This Work
In this work, we propose a novel approach called the smoothed first-order Lagrangian method (SLM)
to tackle the FCO problem presented in (1). The key advantage of SLM is that it only requires the
computation of gradients, making it computationally efficient. Remarkably, under mild assumptions
and a local regularity condition, we establish a strong error bound for SLM to solve this class of
problems, and prove that SLM can converge to the KKT points even when the nonconvex objective
in the constraint has multiple optimal solutions. To summarize, the main contributions of this work
are highlighted as follows:

I This class of structured FCO problems is generic and can be used to formulate multiple machine
learning problems. The proposed SLM is computationally efficient as it relies only on the gra-
dient of the objective functions. Moreover, the obtained convergence rate of the proposed SLM,
which is O(ϵ−1), is optimal for finding the ϵ-KKT points of this class of problems.

I SLM can be applied to solve nonconvex bilevel related optimization problems in the presence of
nonconvexity and non-singleton at the lower level, when the LL objective function satisfies the
PŁ condition.

I The numerical results showcase the competitiveness of the proposed SLM compared to state-of-
the-art BO algorithms in both a toy example and a data hyper-cleaning problem w.r.t. conver-
gence speed and achievable test accuracy.

Due to space constraints, all technical proofs are provided in the supplementary material.
Notations: The distance between y and the set S(x) is defined as dS(x)(y) , miny′∈S(x) ∥y − y′∥.
A high-dimensional ball with a radius of R is denoted as B(R).
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2 Smoothed First-Order Lagrangian Method
In this section, we will introduce the three-layer structure of our first-order method designed to solve
problem (1). Towards this end, we can write the Lagrangian of this constrained problem as follows:

L(x, y;λ) , f(x, y) + λ(g(x, y)− g∗(x)− δ) (3)

where the nonnegative λ denotes the Lagrange multiplier or dual variable.

Next, it is natural to have

∇xL(x, y;λ) = ∇xf(x, y) + λ(∇xg(x, y)−∇xg
∗(x)), (4a)

∇yL(x, y;λ) = ∇yf(x, y) + λ∇yg(x, y), (4b)
∇λL(x, y;λ) = g(x, y)− g∗(x)− δ. (4c)

In contrast to the classical primal-dual algorithm design, here, g∗(x) is typically unknown. Based
on the definition of g∗(x), it is not hard to know that obtaining a closed-form expression for ∇g∗(x)
requires the computation of the Jacobian matrix and the inverse of Hessian matrice even for the case
when g(x, y) is strongly convex w.r.t. y. Although many existing works have provided the iterative
methods of computing these quantities for each iteration [13, 23, 24], the calculational cost and/or
memory budget are still high for large-scale problems. Hence, it is motivated to have an efficient
way of approximating the value and gradient of g∗(x) in the algorithm design.

2.1 Bottom-Layer
One of the most straightforward approaches is to generate a sequence ut indexed by t as an inner
loop to obtain u∗(x) , argminu g(x, u). When the objective function g(x, y) satisfies certain
properties, such as the PŁ condition or the strongly convex condition, applying gradient descent can
lead to finding the global optimal solution of this subproblem with a linear convergence rate [35].

Let r denote the index of the outer iteration steps. Then, the approximate of u∗(x) at each iteration,
i.e., ur, can be estimated through the following process:

urt+1 = urt − γ∇ug(x
r, urt ), (5)

where urt represents the tth iterate of the inner loop, γ denotes the step-size, and ur0 is initialized
within a bounded ball (which will ensure the boundedness of the iterates). After running this algo-
rithm for T r iterations at each step, we set ur+1 = urT r for updating the subsequent optimization
variables.

2.2 Medium-Layer
Given that the quality of g∗(x) can be guaranteed, the most interesting part lies in solving the con-
strained problem w.r.t. block y. Even if we assume that g(x, y) follows the PŁ condition, the
nonconvexity of f(x, y) still poses challenges for the first-order methods in finding the optimal so-
lution. To address this, we propose adding the quadratic proximal terms that renders the Lagrangian
w.r.t. x and y strongly convex, as follows:

K(x, y, w, z;λ) , L(x, y;λ) + p

2
∥x− w∥2 + p

2
∥y − z∥2. (6)

Here, K(x, y, w, z;λ) can be regarded as a modified Lagrangian for this problem. Let Lf and Lg

denote as the smoothness constants of f and g, respectively. Choosing a sufficiently large value for
p (specifically, p = Ω(Lf + λLg)) ensures that K(x, y, w, z;λ) becomes strongly convex.

Subsequently, we can develop the following gradient-based primal-dual algorithm for solving this
constrained subproblem:

λr+1 = P+

[
λr + τ∇λK̂(xr, yr, wr, zr, ur+1;λr)

]
, (7a)

yr+1 = yr − α∇yK(xr, yr, wr, zr;λr+1), (7b)

zr+1 = zr + β(yr+1 − zr), (7c)

where K̂(x, y, w, z, u;λ) , L̂(x, y, u;λ) + p
2∥x−w∥2 + p

2∥y − z∥2 and L̂(x, y, u;λ) , f(x, y) +
λ(g(x, y)−g(x, u)−δ), τ, α, β are the step-sizes, and P+ denotes the projection of the dual variable
onto a box constraint. In particular, P+[λ] is given by P+[λ] = 0 if λ ≤ 0; P+[λ] = λ if 0 < λ ≤ Λ;
P+[λ] = Λ if λ > Λ.
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Remark 1. The auxiliary sequence zr is defined as an exponentially weighted average sequence of
yr+1, which has been previously used in smoothed gradient descent ascent for nonconvex min-max
optimization [36, 37] problems and in the smoothed proximal augmented Lagrangian method for
linearly constrained nonconvex objective problems [32]. However, to the best of our knowledge,
this is the first time that the smoothed primal-dual method is applied to solve nonconvex objective
problems with nonlinear functional constraints.

2.3 Top-Layer
After updating the variables y, z, u, and λ, the variables x and w are updated as follows:

xr+1 = PX

[
xr − η∇xK̂(xr, yr+1, wr, zr+1, ur+1;λr+1)

]
, (8a)

wr+1 = wr + β(xr+1 − wr), (8b)

where PX denotes the projection operator, and η is the step-size.

The detailed algorithm description is provided in Algorithm 1.

Algorithm 1 Smoothed first-order Lagrangian Method (SLM)
Initialization: step-sizes: τ, η, α, β, γ, variables: x1, w1, y1, z1, λ1

1: for r = 1, 2, · · · , T do
2: for t = 0, 1, 2, · · · , T r − 1 do
3: Initialize ur0 ∈ B(R)
4: urt+1 = urt − γ∇ug(x

r, urt ) ◃ bottom layer
5: end for
6: ur+1 = urT r

7: λr+1 = P+

[
λr + τ

(
g(xr, yr)− g(xr, ur+1)− δ

)]
◃ dual variable update

8: yr+1 = yr − α
(
∇yf(x

r, yr) + λr+1∇yg(x
r, yr) + p(yr − zr)

)
◃ medium layer

9: zr+1 = zr + β(yr+1 − zr)
10: xr+1 =PX

[
xr−η

(
∇xf(x

r, yr+1)+λr+1(∇xg(x
r, yr+1)−∇xg(x

r, ur+1))+p(xr−wr)
)]

11: wr+1 = wr + β(xr+1 − wr) ◃ top layer
12: end for

3 Theoretical Convergence Results
Before presenting the theoretical convergence guarantees of SLM, it is necessary to introduce the
following main classes of assumptions. These assumptions are essential in establishing the descent
properties of some quantifiable (potential) function, enabling SLM to converge to KKT points of
this class of nonconvex FCO problems. More detailed definitions and properties regarding these
assumptions are deferred to the supplement.

3.1 Assumptions
The assumptions are mainly related to the continuity and boundedness of the objective function, as
well as the mathematical property of the constraint.

A1. (Smoothness) Assume that functions f(x, y), g(x, y) are differentiable and jointly smooth
with constants Lf , Lg w.r.t. both x, y.

A2. (Compactness) The feasible set X (projection friendly) is convex and compact.
A3. (Boundedness) Assume that the objective function f(x, y) is lower bounded and denoted

as f .
A4. (Coercivity) The set {y|f(x, y) ≤ R, g(x, y)− g∗(x) ≤ δ} is bounded for any R > 0.
A5. (PŁ condition) Function g(x, y) satisfies the PŁ condition, i.e., there exists a constant µg

such that ∥∇yg(x, y)∥2 ≥ 2µg(g(x, y)− g∗(x)), ∀x, y.

Remark 2. Assumptions A1-A3 are standard in the optimization literature, while A4, also referred
to as coerciveness, is a commonly used assumption in theoretical convergence analyses to guarantee
boundedness of the iterates, as observed in methods like smoothed-GDA [36], ADMM [38], BO
algorithms [39, Assumption 3], asynchronous algorithms [40, Assumption 5], etc. In practice, reg-
ularization terms are often included in the objective function, which can ensure that the level set is
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bounded [41]. For instance, as suggested in [39], introducing a small ℓ2-penalty to a non-negative
loss (e.g. cross-entropy or mean-squared loss) can establish boundedness for both the level set and
the iterates. An example involving neural networks can be found in [42, Theorem 2]. A5 is a rea-
sonable and practical assumption for neural network applications. Previous studies, such as [43],
have demonstrated theoretically that when neural networks are overparametrized, the loss function
satisfies the PŁ condition. Other examples include the nonconvex discounted return objective in
reinforcement learning [44], and the loss function of a specific class of linear quadratic regulator
models [45, Lemma 3].

Local Regularity Condition. Let x̄∗(w, z), ȳ∗(w, z) be the KKT solution of problem minx,y f(x, y)+
p
2∥x − w∥2 + p

2∥y − z∥2, s.t. g(x, y) ≤ g∗(x) + δ. Then, there exist positive constants δ and
ϱ such that when ∥w − x̄∗(w, z)∥2 + ∥z − ȳ∗(w, z)∥2 ≤ ϱ, the following inequality holds
g(x̄∗(w, z), ȳ∗(w, z)) ≥ g∗(x̄∗(w, z)) + δ(w, z), where δ(w, z) ≥ δ.

Remark 3. Given the feasibility of achieving the global optimal solution of g∗(x̄∗(w, z)) and the re-
quirement for variable y to minimize both objective functions, it is reasonable to expect that ȳ∗(w, z)
can be close to argmin g(x̄∗(w, z), y) up to some very small constant. It is worth noting that this
assumption is fairly mild, as we only require this condition to hold in the neighborhoods of the KKT
points.
Given these assumptions, we are now in a position to provide the following theoretical convergence
guarantees for SLM.

3.2 Convergence Rates of SLM

Let G(xr, yr) be defined as G(xr, yr) , [η−1(xr−PX (xr−η∇xL(xr, yr;λr)));∇yL(xr, yr;λr)].
We denote ∥G(xr, yr)∥ as the stationary gap.

Theorem 1. (Convergence Rate of SLM to the KKT Points of problem (1)) Suppose that A1-A5 are
satisfied, and the local regularity condition holds. Assume that the iterates {xr, yr, wr, zr, ur, λr}
are generated by SLM. If the step-sizes are chosen as η, α ∼ O(1/λr), γ = O(1/Lg), p = Θ(λr),
τ = O(1), β = O(δ1.5) when 0 < δ < 1, and β = O(1) when δ > 1, and T r = Ω(log(rλr)),
Λ ∼ Θ(1/

√
δ), then, ϱ = O(

√
δ) and the following results hold

A1. Every limit point of {xr, yr, wr, zr, ur, λr} generated by SLM is a KKT point of problem
(1).

A2.

1

T

T∑
r=1

∥G(xr, yr)∥2 = O
(
1

T

)
, (9a)

1

T

T∑
r=1

|g(xr, yr)− g∗(xr)− δ|2+ = O
(
1

T

)
(9b)

1

T

T∑
r=1

|(g(xr, yr)− g∗(xr)− δ)λr|2 = O
(
1

T

)
(9c)

where | · |+ takes the positive part, and T denotes the total number of iterations.

Remark 4. From Theorem 1, we can conclude that the iteration complexity of SLM to reach an ϵ-
KKT stationary point is O(1/ϵ). It is also worth noting that this convergence rate is optimal in terms
of ϵ, as it matches the lower bound established by the first-order method for finding an ϵ-stationary
point of nonconvex smooth optimization problems [46].

Corollary 1. (Convergence Rate of SLM to ϵ-KKT Solutions of the BO problem (2)) Suppose that A1-
A5 hold and the local regularity condition holds. Assume that the iterates {xr, yr, wr, zr, ur, λr}
are generated by SLM. Given the condition that δ = ϵ and assuming δ = ϵ, if the step-sizes η, α =
O(1/λr), β = O(ϵ1.5), γ = O(1/Lg), τ = O(1), T r = Ω(log(1/ϵ)) and p,Λ = Θ(1/

√
ϵ),

then ϱ = O(
√
ϵ) and the iteration complexity of SLM for finding an ϵ-KKT stationary solution is

O(1/ϵ3.5).

Remark 5. Here, an ϵ-KKT stationary solution of this FCO problem refers to a point {x∗, y∗} that
satisfies ∥G(x∗, y∗)∥2 ≤ ϵ and |g(x∗, y∗)−g∗(x∗)−δ|2+ ≤ ϵ, and |(g(x∗, y∗)−g∗(x∗)−δ)λ∗|2 ≤ ϵ.
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4 Proof Sketch
In this section, we will present the main theorem proving techniques employed to establish the
results in Theorem 1. Let

D(w, z;λ) , min
x∈X ,y

K(x, y, w, z;λ), (10a)

P (w, z) , min
x∈X ,y

max
0≤λ≤Λ

K(x, y, w, z;λ), (10b)

x∗(w, z;λ), y∗(w, z;λ) , arg min
x∈X ,y

K(x, y, w, z;λ), (10c)

x̄∗(w, z), ȳ∗(w, z) , arg min
x∈X ,y

max
0≤λ≤Λ

K(x, y, w, z;λ). (10d)

These four quantities are associated with the dual error bounds. The first two quantities, given by
(10a) and (10b), define the optimal values of x, y given w, z, and λ, while the last two quantities,
defined by (10c) and (10d), represent the optimal solutions for these intermediate subproblems.

It is obvious that when p is sufficiently large, K(x, y, w, z;λ) is strongly convex jointly w.r.t. x and
y. First, under A1 and A5, we can easily show that

d2S(xr)(u
r
T r ) ≤ µg

(
1− γ

2µg

)T r

(g(xr, ur0)− g∗(xr)) , (11)

so under A2 and the assumption that ur is initialized within a bounded set, it follows that d2S(xr)(u
r
T r )

decreases to 0 at a linear rate. This inequality (11) is instrumental in quantifying the bias term
|g∗(xr) − g(xr, ur+1)|2 that arises due to the inaccurate estimation of argminy g(x, y). Next, we
will present the following three lemmas which play a crucial role in establishing the proof of Theo-
rem 1.

4.1 Descent Lemmas
After one round update of SLM (i.e., from (xr, yr, wr, zr, λr) to (xr+1, yr+1, wr+1, zr+1, λr+1),
we can obtain the following result.
Lemma 1. Under A1-A5, suppose that the sequence is generated by SLM. When α, η ≤ O(1/λr+1),
0 < β < 1, T r = Ω(log(rλr+1)), and p > L, there exists a constant ζ such that

Q(xr+1, yr+1, wr+1, zr+1;λr+1)−Q(xr, yr, wr, zr;λr)

≤ −

(
1

4η
−

17τ(ℓ2g + ℓ′2g )σ
2
3

η2

)
∥xr+1 − xr∥2 −

(
1

2α
−

9τℓ2gσ
2
3

α2

)
∥yr+1 − yr∥2

− p

(
1

2β
−
(
1

ζ
+

2p

p− L
+ 36ζσ2

1

))
∥zr+1 − zr∥2 − p

(
1

2β
−
(
1

ζ
+

2p

p− L

))
∥wr+1 − wr∥2

+ 36pζ
(
∥y∗(wr, zr;λr+1

+ (wr, zr))− ȳ∗(wr, zr)∥2 + ∥x∗(wr, zr;λr+1
+ (wr, zr))− x̄∗(wr, zr)∥2

)
− τ

(
1

56
− 48pζσ2

2τ

)
|g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ|2

+
(
µgL

2
g + 2ℓ2g

) DS

r2
− 1

4τ
∥λr+1 − λr∥2 (12)

where σ1 , (p − L)/p, σ2 = (p + L)/(p − L), σ3 = 1/(p − L), L = Lf + λ(2Lg + L2
g/(2µg)),

λ+(w, z) = P+[λ + τ∇λK(x∗(w, z;λ), y∗(w, z;λ), w, z;λ)], ℓg, ℓ′g denote Lipschitz constant of
g(x, y) and g∗(x) respectively, the potential function is

Q(xr, yr, wr, zr;λr) , K(xr, yr, wr, zr;λr)− 2D(wr, zr;λr) + 2P (wr, zr), (13)

and DS , 2µ−1
g (max g(x, u0)−min g∗(x)) ∀x ∈ X , u0 ∈ B(R).

It can be observed that the coefficients in front of the terms ∥xr+1 − xr∥2, ∥yr+1 − yr∥2, ∥zr+1 −
zr∥2, ∥wr+1 −wr∥2 and |g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ|2 can
be negative when the step-sizes are properly chosen and the bias term can be summed up to a
constant. Hence, to ensure a sufficient decrease of Q(xr, yr, wr, zr;λr), it is necessary to bound the
positive terms w.r.t. ∥y∗(wr, zr;λr+1

+ (wr, zr)) − ȳ∗(wr, zr)∥2 and ∥x∗(wr, zr;λr+1
+ (wr, zr)) −

x̄∗(wr, zr)∥2. To accomplish this, two novel dual error bounds are provided as follows.
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4.2 Dual Error Bounds
Lemma 2. (Weak Dual Error Bound) Under A1-A3 and A5, suppose that the sequence
{xr, yr, wr, zr, ur, λr} is generated by SLM. Then, it holds that

∥y∗(wr, zr;λr+1
+ (wr, zr))− ȳ∗(wr, zr)∥2 + ∥x∗(wr, zr;λr+1

+ (wr, zr))− x̄∗(wr, zr)∥2

≤ σweak∥λr+1 − λr+1
+ (wr, zr)∥∥λ(wr, zr)− λr+1

+ (wr, zr)∥ (14)

where

σweak ,
1 + τ(2ℓg + ℓ′g)σ2

2τ(p− L)
, λ(w, z) ∈ arg max

0≤λ≤Λ
K(x̄∗(w, z), ȳ∗(w, z), w, z;λ). (15)

Although (14) has quantified the variations between y∗(wr, zr;λr+1
+ (wr, zr)) and ȳ∗(wr, zr) and

between x∗(wr, zr;λr+1
+ (wr, zr)) and x̄∗(wr, zr) when the dual variable is perturbed1, this bound

is in a non-homogeneous form. Therefore, it is not sufficient to demonstrate the O(1/ϵ) convergence
rate of the sequence generated by SLM. Fortunately, under the local regularity condition, we can
obtain the following stronger result, which provides further insight.
Lemma 3. (Strong Dual Error Bound) Under A1-A3, A5 and the local regularity condition, suppose
that the sequence {xr, yr, wr, zr, ur, λr} is generated by SLM. Then, there exists a constant σstrong
such that

∥y∗(wr, zr;λr+1
+ (wr, zr))− ȳ∗(wr, zr)∥+ ∥x∗(wr, zr;λr+1

+ (wr, zr))− x̄∗(wr, zr)∥
≤ 2σstrongτ |g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ| (16)

where
σstrong , σweak

Lf + p+ ΛLg√
2µgδ

. (17)

Given this inequality, we can quantify the sufficient descent of the potential function, which further
leads to the convergence rate of SLM.

5 Numerical Results
In this section, we evaluate our proposed algorithm for solving the bilevel optimization related prob-
lems and compare the performance of our proposed SLM with the state-of-the-art methods.

5.1 Toy Example
First, we consider the following toy example

min
x∈[1,2]

f(x, y) , x2 + y2 + 3x sin2(y), s.t. g(x, y)− g∗(x) ≤ δ (18)

where the LL objective function is g(x, y) , xy2 + 3x sin2(y) and δ = 1 × 10−3. It can be easily
checked that function g(x, y) satisfies the PŁ condition w.r.t. variable y and function f(x, y) is
nonconvex w.r.t. x and y jointly.
In the numerical results, we initialize variables as x1 = y1 = u1 = 1 and choose the step-sizes
for updating these variables (u, y, x) as 1 × 10−3 for all the compared methods. Additionally, we
set p = 1 and β = 0.5 for SLM. It can be seen from Figure 1 that SLM provides the advantage

1λr+1
+ (wr, zr) is a perturbation of λr+1.

number of iterations r

c
o
n
st
ra
in
t
v
io
la
ti
o
n

SLM

BOME

V-PBGD

(a) Constraint violation
number of iterations r

lo
w
er
-l
ev
el
o
b
je
ct
iv
e
va
lu
e

SLM
BOME
V-PBGD

(b) LL objective value
number of iterations r

u
p
p
er
-l
ev
el
o
b
je
ct
iv
e
va
lu
e SLM

BOME
V-PBGD

(c) UL objective value

Figure 1: Convergence performance of SLM, BOME [15], and V-PBGD [16] on the toy example.
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of enforcing the constraint to be satisfied even the LL objective is noncovnex. Moreover, all the
algorithms converge to the global optimal solution of the LL problem. It is worth noting that SLM
achieves the lowest UL objective value compared to the other methods. This can be attributed to
the relaxation introduced by δ in achieving the optimal solution of the LL problem, which provides
more flexibility in searching for lower UL objective values.

5.2 Data Hyper-Cleaning

Figure 2: Comparison between SLM and V-
PBGD on the data hyper-cleaning task over
the MNIST dataset.

Next, we further evaluate SLM for the data hyper-
cleaning problem, which has gained widespread
adoption in the machine learning community [3, 16].
The goal of this learning task is to identify and selec-
t the clean data samples from the polluted ones, en-
abling the pre-trained model to generalize effectively
on the clean test dataset. The optimization problem
is commonly formulated as follows:

min
x,y

ℓval(y), s.t. y ∈ argmin
y′

ℓtrain(x, y′) (19)

where ℓval and ℓtrain represent the validation (at the
UL) and training (at the LL) losses, respective-
ly. The LL loss function is defined as ℓtrain ,∑m

i=1 σ(xi)ℓ(y), where m denotes the total number
of training data samples, σ(x) is the sigmoid function, and y denotes the weights of the neural net-
work. Adhering to the experimental settings used to test the V-PBGD as shown in [16], we are given
5, 000 training data samples from the MNIST dataset. Among these samples, 50% are randomly
polluted with incorrect labels. Additionally, we have a validation dataset consisting of 5, 000 sam-
ples and a separate test set comprising 10, 000 samples. The model parameter y includes the neural
network weights of a hidden layer with a size of 10× 784 and bias terms with a size of 10.

It has been shown in [16] that V-PBGD outperforms significantly the state-of-the-art methods, in-
cluding BOME [15], IAPTT-GM [47], RHG [3], T-RHG [4], for this particular example. We adapt
the code used to implement V-PBGD to evaluate the performance of SLM and set τ = p = 20,
β = 0.5, δ = 1.2 for SLM. From Figure 2, it can be observed that SLM initially converges at a sim-
ilar rate to V-PBGD in terms of the test loss values. However, after a certain number of iterations,
SLM achieves smaller loss values. The reason behind this observation is that once the constraint is
satisfied, the optimization variables primarily focus on minimizing the UL objective values, leading
to lower test losses in this example. Although SLM achieves a test accuracy similar to V-PBGD,
with the highest test accuracy of 90.44%, when the number of iterations becomes large (e.g., exceed-
ing 3, 000 in the figure), the model begins to overfit the training data. However, SLM maintains a
test accuracy of 88.8%, while V-PBGD can only attain 88.1%.

As for the constraint violation, we define cerror , ℓtrain(x, y)−v(x), where v(x) is computed through
the updating process of variable u. This measure represents the distance between the LL objective
value and the optimal value. V-PBGD results in a cerror value of approximately 0.68, whereas SLM
achieves a (cerror − δ) value of 0.001 when the total number of iterations exceeds 2, 000 in the figure.
This further reinforces the fact that due to the presence of the optimization variables appearing in
both levels or the coupling between the LL and UL variables, it is highly challenging for y in the BO
formulation to find the global optimal solution of the LL problem. In contrast, SLM can find KKT
solutions for this class of structured FCO problems as long as the hyper-parameter δ is appropriately
defined.

5.3 Neural Network on MNIST Data Set
We also evaluate the performance of these algorithms on a 2-layer neural network. The size of the
first layer is 784 × 300, and the size of the second layer is 300 × 10. The activation function used
is the sigmoid function. For all the compared algorithms, we set the step-sizes of the block-x and
block-y updates to 1. The step-size γ for the auxiliary block-u update is set to 0.1. Additionally, we
choose τ = 0.01, β = 0.5, and p = 20 for SLM, while for BOME, we use η = 0.1. The remaining
settings remain the same as mentioned in the main text for the linear case.

The results, averaged over 5 independent trials, are presented in Figure 3. It can be observed from
Figure 3(a) that SLM with δ = 1 achieves the lowest test loss and converges faster compared to

9



number of iterations r

te
st

lo
ss

SLM δ = 1:0
SLM δ = 0:5
BOME
V-PBGD

(a) Test loss

SLM δ = 1:0
SLM δ = 0:5
BOME
V-PBGD

number of iterations r

te
st

a
cc
u
ra
cy

(b) Test accuracy

Figure 3: Convergence performance of SLM, BOME [15], and V-PBGD [16] on the neural network.

BOME. When δ = 0.5, the convergence rate of SLM becomes slower. Both of these observations
align with the theoretical convergence analysis. The test loss obtained by V-PBGD initially decreas-
es and then increases, which is reasonable as this method optimizes both the UL (validation) and
LL (training) loss values, with the penalty parameter increasing as the number of iterations rises. In
contrast, SLM primarily minimizes the objective loss values, specifically the validation loss in this
case, leading to better generalization performance as long as the constraint is satisfied. The con-
straint tolerance parameter δ and the dual variable implicitly play the tradeoff between the training
and validation losses.

Regarding the test accuracy shown in Figure 3(b), SLM with δ = 1 achieves a minimum of 94.74±
0.04%, which is the lowest among all the algorithms compared. V-PBGD can reach 94.65± 0.09%
but converges slower than SLM with δ = 1. SLM with δ = 0.5 and BOME converge relatively
quickly initially and reach peak accuracies of 94.53 ± 0.06% and 94.52 ± 0.11%, respectively.
However, it is evident that the test accuracy achieved by BOME decreases rapidly as the algorithm
proceeds, even though the test loss continues to decrease, forming a clear U-shape. This implies
that BOME overfits the validation data when the number of iterations is large. In contrast, the test
accuracy achieved by SLM remains relatively stable, or at least does not decline as rapidly as that
attained by BOME. This further confirms that the use of structured constraints in this class aids in
improving the generalization performance of bilevel models.

6 Concluding Remarks
In this work, we focused on solving a class of structured nonconvex FCO problems, where the
functional constraint satisfies the PŁ condition w.r.t. one block of variables. In practical applications,
this class of FCO problems can effectively model a wide range of nested or hierarchical learning
problems, including data hyper-cleaning, meta-learning, corset selection, and more. To address these
challenges, we developed a smoothed primal-dual algorithm based on the Lagrangian method. The
proposed algorithm achieves a convergence rate of O(ϵ−1) to the ϵ-KKT solutions of this problem
by utilizing only the first-order oracles for both the objective function and the constraint.

The major difficulty from a theoretical perspective lies in showing the dominance of the descent
achieved by the algorithm over the ascent induced by enforcing the nonconvex functional constraint.
To the best of our knowledge, this is the first result showcasing that the dual error bound also holds
for solving this class of nonlinear constraints. We conducted extensive numerical experiments to
evaluate the performance of the proposed SLM against benchmark nonconvex BO methods. The
results demonstrate that SLM not only ensures the satisfaction of the functional constraint but also
achieves small objective values.

It is important to note that this work focuses on the scenario with a single constraint. Future research
endeavors will explore the extension of the algorithm design and theoretical results to more general
settings. Addressing this limitation will contribute to a broader applicability of the proposed method.
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Supplementary Material

A Preliminaries

In this section, we provide some technical preliminaries for the proofs of the lemmas and theorems
claimed in the main body of this paper and the supplementary material, including parameter defini-
tions and supporting results.

A.1 Inequalities

Basic inequalities used in the proof include

1. Strong Convexity: if function f(x) is strongly convex with modulus µ, then

f(x)− f(x′) ≥ µ

2
∥x− x′∥2. (20)

2. Young’s inequality with parameter θ > 0:

⟨x, y⟩ ≤ 1

2θ
∥x∥2 + θ

2
∥y∥2, ∀x, y. (21)

3. Triangle inequality and reverse triangle inequality:

∥x+ y∥ ≤ ∥x∥+ ∥y∥, ∥x− y∥ ≥ ∥x∥ − ∥y∥. (22)

4. Cauchy-Schwarz inequality
⟨x, y⟩ ≤ ∥x∥∥y∥. (23)

A.2 Notations

The definitions of the parameters and assumptions are further listed in Table 2.

Note that under A2 (i.e., compactness of the feasible set X ) the Lipschitz continuity of
f(x, y), g(x, y) w.r.t. x holds. In Section C.3, we will demonstrate that the iterates (such as
yr, ȳ∗(wr, zr)) for which we need to evaluate the gradients or function values of g(x, y), g∗(x),
and f(x, y) are bounded, which implies that the corresponding Lipschitz continuity holds. To be
more precise, ℓf , Lg, ℓg, ℓ

′
g and others are listed in the section of notations in Table 2.

A.3 Primal Error Bounds

Recall that the definition of K(x, y, w, z;λ) is

K(x, y, w, z;λ) , f(x, y) + λ(g(x, y)− g∗(x)− δ) +
p

2
∥x− w∥2 + p

2
∥y − z∥2. (24)

Based on the assumptions listed in Table 2, we have that f, g are gradient Lipschitz continuous.
Further, it has been shown in [34, Lemma A5] that ∇g∗(x) = ∇xg(x, y

∗) for any y∗ ∈ S(x) and
g∗(x) is Lipschitz smooth with modulus Lg + L2

g/(2µg). Therefore, the Lagrangian L(x, y;λ) is
gradient Lipschitz continuous with parameter

L , Lf + λ

(
2Lg +

L2
g

2µg

)
. (25)

Subsequently, function K(x, y, w, z;λ) is strongly convex of x and y with parameter p − L and
gradient Lipschitz continuous with parameter

LK , L+ p. (26)

Given these property and the assumptions listed in Table 2, we can obtain the following primal error
bounds that have been studied in [33, Lemma 5], [32, Lemma 3.5 and Lemma 3.10] and [36, Lemma
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Table 2: Summary of Definitions. (“Lips.”: Lipschitz; “grad.”: gradient; “const.”: constant; “opt.”:
optimal; “·” represents the gradient is taken w.r.t. either x or y; “[x; y]” symbolizes the concatenation
of x and y; PEB: primal error bound; DEB: dual error bound.)

A1 Definition Annotation

Lf
∥∇·f(x, y)−∇·f(x

′, y)∥ ≤ Lf∥x− x′∥ grad. Lips. const. of f(x, y) w.r.t x
∥∇·f(x, y)−∇·f(x, y

′)∥ ≤ Lf∥y − y′∥ grad. Lips. const. of f(x, y) w.r.t y
Lg ∥∇yg(x, y)−∇yg(x, y

′)∥ ≤ Lg∥y − y′∥ grad. Lips. const. of g w.r.t. y

A2 Definition Annotation
X closed and bounded imply (grad.) Lips. of f, g w.r.t. x

A5 Definition Annotation
µg ∥∇yg(x, y)∥2 ≥ 2µg(g(x, y)− g∗(x)) PŁ condition

Parameter Definition Annotation
dS(x)(y) miny′∈S(x) ∥y − y′∥ min distance from y to S(x)
DS maxu d

2
S(x)(u) (cf. (33)) upper bound of d2S(x)(u)

D(w, z;λ) minx,yK(x, y, w, z;λ)

x∗(w, z;λ) argminx,yK(x, y, w, z;λ) opt. solution of D(w, z;λ) w.r.t. x
y∗(w, z;λ) argminx,yK(x, y, w, z;λ) opt. solution of D(w, z;λ) w.r.t. y
P (w, z) minx,y max0≤λ≤ΛK(x, y, w, z;λ)

x̄∗(w, z) argminx,y max0≤λ≤ΛK(x, y, w, z;λ) opt. solution of P (w, z) w.r.t. x
ȳ∗(w, z) argminx,y max0≤λ≤ΛK(x, y, w, z;λ) opt. solution of P (w, z) w.r.t. y
v v , (w, z) abbreviation of w, z

Notation Definition Annotation
ℓf |f(x, y)− f(x, y′)| ≤ ℓf∥y − y′∥ Lips. const. of f(x, y) w.r.t. y
Lg ∥∇·g(x, y)−∇·g(x

′, y)∥ ≤ Lg∥x− x′∥ grad. Lips. const. of g(x, y)

ℓg
∥g(x, y)− g(x, y′)∥ ≤ ℓg∥y − y′∥ Lips. const. of g(x, y) w.r.t. y
∥g(x, y)− g(x′, y)∥ ≤ ℓg∥x− x′∥ Lips. const. of g(x, y) w.r.t. x

ℓ′g ∥g∗(x)− g∗(x′)∥ ≤ ℓ′g∥x− x′∥ (cf. [34]) Lips. const. of g∗(x) w.r.t. x

L
∥∇L(x, y;λ)−∇L(x′, y′;λ)∥

grad. Lips. const. of L() w.r.t. x, y
≤ L∥[x; y]− [x′; y′]∥ (cf. (25))

LK L+ p (cf. (26)) grad. Lips. const. of K() w.r.t. x, y
σ1 p(p− L)−1 (cf. (27a)) const. of PEB w.r.t. v
σ2 (p+ L)(p− L)−1 (cf. (28a)) const. of PEB w.r.t. λ
σ3 (p− L)−1 (cf. (29a)) const. of PEB w.r.t. xr or yr

σweak (1 + τ(2ℓg + ℓ′g)σ2)(τ(p− L))−1 (cf. (80)) const. of weak DEB
σaux (Lf + p+ ΛLg)/

√
2µgδ (cf. (94)) const. of auxiliary DEB

σstrong σweakσaux (cf. (100)) const. of strong DEB

B.2]. To be more specific, from [36, Lemma B.2] we have

∥y∗(w, z;λ)− y∗(w, z′;λ)∥ ≤ p

p− L︸ ︷︷ ︸
,σ1

∥z − z′∥, (27a)

∥x∗(w, z;λ)− x∗(w′, z;λ)∥ ≤ σ1∥w − w′∥, (27b)

∥ȳ∗(w, z)− ȳ∗(w, z′)∥ ≤ σ1∥z − z′∥, (27c)

∥x̄∗(w, z)− x̄∗(w′, z)∥ ≤ σ1∥w − w′∥. (27d)

Similarly, following [36, Lemma B.2], we can also have
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∥y∗(w, z;λ)− y∗(w, z;λ′)∥ ≤ p+ L

p− L︸ ︷︷ ︸
,σ2

∥λ− λ′∥, (28a)

∥x∗(w, z;λ)− x∗(w, z;λ′)∥ ≤ σ2∥λ− λ′∥, (28b)

and from [32, Lemma 3.10] or [33, Lemma 5] we can directly get

∥y∗(wr, zr;λr+1)− yr∥ ≤ 1

α

1

p− L︸ ︷︷ ︸
,σ3

∥yr+1 − yr∥, (29a)

∥x∗(wr, zr;λr+1)− xr∥ ≤ σ3
η
∥xr+1 − xr∥, (29b)

∥y∗(wr, zr;λr+1)− yr+1∥ ≤ 1 + α(p− L)

α(p− L)
∥yr+1 − yr∥, (29c)

∥x∗(wr, zr;λr+1)− xr+1∥ ≤ 1 + η(p− L)

η(p− L)
∥xr+1 − xr∥, (29d)

where the primal error bounds (29b) and (29d) hold as K̂ (which is used for updating x) is also
(p− L)-strongly convex and (p+ L)-Lipschitz smooth.

A.4 Outline of the Proof
We will begin by presenting the contraction property of the block-u update in Lemma 4. Next,
we will show the primal descent in Lemma 5, dual ascent in Lemma 6, and proximal descent in
Lemma 7 by following the update rule of SLM, which will be used to construct the potential function.
However, these lemmas alone are insufficient to establish the decrease of the potential function to
achieve the O(1/ϵ) convergence rate, as mentioned in the main text. Hence, we prove the strong
dual error bound Lemma 3 by combining the weak dual error bound presented in Lemma 2 and the
key auxiliary lemma in Lemma 8, which ensures the homogeneity of the dual error bound.

With the strong dual error bound established, we can demonstrate the sufficient decrease of the
potential function in Lemma 9. This, in turn, leads to the final convergence results shown in Section
Section D. Throughout the process of proving the lemmas and theorems, we initially assume the
boundedness of the dual variable, as well as yr, ȳ∗(wr, zr), y∗(wr, zr;λr+1). We then verify these
assumptions through mathematical induction, which are shown in Lemma 11 and Lemma 12.

B Convergence Analysis
We now present the proofs, related results, and technical details that establish the lemmas and theo-
rems of our convergence analysis.

We first show that the contraction property of u-update for the value function.

B.1 Contraction of Auxiliary Variable u
Lemma 4.

Under A1, A2, and A5. Assume that the sequence {xr, yr, wr, zr, ur, λr, ∀r} is generated by
SLM. When

γ ≤ min

{
1

Lg
,

1

2µg

}
, (30)

we have
d2S(xr)(u

r+1) ≤ 2

µg
(1− 2γµg)

T r

(g(xr, ur0)− g∗(xr)) . (31)

Further, we can obtain
d2S(xr)(u

r+1) ≤ (1− 2γµg)
T r

DS ∀r (32)

where
DS , 2µ−1

g (max g(x, u0)−min g∗(x)) ∀x ∈ X , u0 ∈ B(R). (33)
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Proof. According to the gradient Lipschitz continuity of function g(x, y) w.r.t. y (cf. A1), we have

g(xr, urt+1) ≤ g(xr, urt )− γ⟨∇ug(x
r, urt ), u

r
t+1 − urt ⟩+

Lgγ
2

2
∥∇ug(x

r, urt )∥2 (34)

(a)

≤ g(xr, urt )− γ∥∇ug(x, u
r
t )∥2 +

Lgγ
2

2
∥∇ug(x

r, urt )∥2 (35)

(b

≤ g(xr, urt )−
γ

2
∥∇ug(x, u

r
t )∥2 (36)

where in (a) we apply (5), (b) holds when γ ≤ 1/Lg .

Under A5, we have
g(xr, urt+1)− g∗(xr) ≤ g(xr, urt )− g∗(xr)− 2γµg (g(x

r, urt )− g∗(xr)) (37)
≤ (1− 2γµg) (g(x

r, urt )− g∗(xr)) . (38)

From [35, Theorem 2], we know that the PŁ condition implies the error bound with the same con-
stant, i.e., d2S(xr)(u

r
t ) ≤ 2/µg(g(x

r, urt )− g∗(xr)), which yields

d2S(xr)(u
r+1)

(a)
= d2S(xr)(u

r
T r )

≤ 2

µg

(
g(xr, urt+1)− g∗(xr)

)
(39)

≤ 2

µg
(1− 2γµg)

T r

(g(xr, ur0)− g∗(xr)) (40)

where (a) holds due to the line 7 of Algorithm 1. Combining the facts that X is compact and ur is
initialized within a ball gives this lemma directly.

B.2 Descent Lemmas and Dual Ascent

B.2.1 Primal Descent Lemma

Lemma 5.

(Primal Descent) Under A1-A5, suppose that the sequence {xr, yr, wr, zr, ur, λr, ∀r} is gen-
erated by SLM. When

0 < η, α ≤ 1

LK
, 0 < β ≤ 1, and T r ≥ −2 log(1−2γµg)(λ

r+1√ηr), (41)

then the primal descent inequality holds, namely,

K(xr+1, yr+1, wr+1, zr+1;λr+1)−K(xr, yr, wr, zr;λr)

≤ − 1

4η
∥xr+1 − xr∥2 + ⟨g(xr, yr)− g∗(xr)− δ, λr+1 − λr⟩

− 1

2α
∥yr+1 − yr∥2 − p

2β
∥zr+1 − zr∥2 − p

2β
∥wr+1 − wr∥2 +

µgL
2
gDS

r2
. (42)

Proof. x-update: First, recall

∇xK̂(xr, yr+1, wr, zr+1, ur+1;λr+1)

, ∇xf(x
r, yr+1) + λr+1

(
∇xg(x

r, yr+1)−∇xg(x
r, ur+1)

)
+ p(xr − wr). (43)

From (8a), one step of the projected gradient descent step gives
K(xr+1, yr+1, wr, zr+1;λr+1)−K(xr, yr+1, wr, zr+1;λr+1)

(a)

≤⟨∇K(xr, yr+1, wr, zr+1;λr+1), xr+1 − xr⟩+ LK

2
∥xr+1 − xr∥2 (44)

≤⟨∇K̂(xr, yr+1, wr, zr+1, ur+1;λr+1), xr+1 − xr⟩+ LK

2
∥xr+1 − xr∥2

+ ⟨∇K(xr, yr+1, wr, zr+1;λr+1)−∇K̂(xr, yr+1, wr, zr+1, ur+1;λr+1), xr+1 − xr⟩ (45)
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where (a) is because gradient Lipschitz continuity of K(x, y, w, z;λ) is with parameter LK .

From the optimality condition of (8a), we have

⟨∇xK̂(xr, yr+1, wr, zr+1, ur+1;λr+1), xr+1 − xr⟩ ≤ −1

η
∥xr+1 − xr∥2. (46)

Regarding the last term at the right hand side (RHS) of (45), we have

⟨∇K(xr, yr+1, wr, zr+1;λr+1)−∇K̂(xr, yr+1, wr, zr+1, ur+1;λr+1), xr+1 − xr⟩

≤ η∥∇K(xr, yr+1, wr, zr+1;λr+1)−∇K̂(xr, yr+1, wr, zr+1, ur+1;λr+1)∥2 + 1

4η
∥xr+1 − xr∥2

where we apply Young’s inequality with parameter 2.

For the first term at the RHS of the above inequality, we can further have

∥∇K(xr, yr+1, wr, zr+1;λr+1)−∇K̂(xr, yr+1, wr, zr+1, ur+1;λr+1)∥2

≤ (λr+1)2∥∇g∗(xr)−∇g(xr, ur+1)∥2 (47)

≤ (λr+1)2L2
gd

2
S(xr)(u

r+1) (48)
(32)
≤ (λr+1)2L2

gµg (1− 2γµg)
T r

DS (49)
(a)

≤
µgL

2
gDS

ηr2
(50)

where in (a) we take T r ≥ −2 log(1−2γµg)(λ
r+1√ηr).

Substituting (46) and (50) back to (45) gives

K(xr+1, yr+1, zr+1;λr+1)−K(xr, yr+1, zr+1;λr+1) ≤ − 1

4η
∥xr+1 − xr∥2 +

µgL
2
gDS

r2
(51)

where we select η ≤ 1/LK .

w-update: From (6), we have

K(xr+1, yr+1, wr+1, zr+1;λr+1)−K(xr+1, yr+1, wr, zr+1;λr+1)

=
p

2

(
∥xr+1 − wr+1∥2 − ∥xr+1 − wr∥2

)
(52)

=
p

2
⟨wr − wr+1, xr+1 − wr+1 + xr+1 − wr⟩ (53)

(a)

≤ − p

2β
∥wr+1 − wr∥2 (54)

where (a) holds due to

⟨wr − wr+1, xr+1 − wr+1 + xr+1 − wr⟩
= ⟨wr − wr+1, xr+1 − wr + wr − wr+1 + xr+1 − wr⟩ (55)

=

(
1− 2

β

)
∥wr+1 − wr∥2 (56)

and (8b) for β ≤ 1.

λ-update: According to the dual variable update (7a), we have

K(xr, yr, wr, zr;λr+1)−K(xr, yr, wr, zr;λr) = ⟨g(xr, yr)− g∗(xr)− δ, λr+1 − λr⟩. (57)

y-update: The update of y shown in (7b) is the standard gradient descent, which gives

K(xr, yr+1, wr, zr;λr+1)−K(xr, yr, wr, zr;λr+1)

≤ ⟨∇K(xr, yr, wr, zr;λr+1), yr+1 − yr⟩+ LK

2
∥yr+1 − yr∥2 (58)

≤ − 1

2α
∥yr+1 − yr∥2 (59)
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where α ≤ 1/LK .

z-update: Similar to the w-update. From (7c), we have

K(xr, yr+1, wr, zr+1;λr+1)−K(xr, yr+1, wr, zr;λr+1) ≤ − p

2β
∥zr+1 − zr∥2. (60)

B.2.2 Dual Ascent Lemma

Lemma 6.

(Dual Ascent) Under A1-A5, suppose that the sequence {xr, yr, wr, zr, ur, λr, ∀r} is generated
by SLM. When p > L, the dual ascent inequality holds, namely,

D(wr+1, zr+1;λr+1)−D(wr, zr;λr)

≥ ⟨λr+1 − λr, g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1)− δ)⟩

+
p

2
⟨zr+1 − zr, zr+1 + zr − 2y∗(wr, zr+1;λr+1)⟩

+
p

2
⟨wr+1 − wr, wr+1 + wr − 2x∗(wr+1, zr+1;λr+1)⟩. (61)

Proof. Recall
K(x, y, w, z;λ) , L(x, y;λ) + p

2
∥x− w∥2 + p

2
∥y − z∥2. (62)

Then, we can have
D(wr, zr;λr+1)−D(wr, zr;λr)

= K(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1), wr, zr;λr+1)

−K(x∗(wr, zr;λr), y∗(wr, zr;λr), wr, zr;λr) (63)
(a)

≥ K(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1), wr, zr;λr+1)

−K(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1), wr, zr;λr) (64)

= ⟨λr+1 − λr, g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1)− δ)⟩ (65)
where in (a) we use the definition of y∗(wr, zr;λr+1) for p > L.

Similarly, we have
D(wr, zr+1;λr+1)−D(wr, zr;λr+1)

= K(x∗(wr, zr+1;λr+1), y∗(wr, zr+1;λr+1), wr, zr+1;λr+1)

−K(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1), wr, zr;λr+1) (66)

≥ K(x∗(wr, zr+1;λr+1), y∗(wr, zr+1;λr+1), wr, zr+1;λr+1)

−K(x∗(wr, zr+1;λr+1), y∗(wr, zr+1;λr+1), wr, zr;λr+1) (67)

=
p

2

(
∥y∗(wr, zr+1;λr+1)− zr+1∥2 − ∥y∗(wr, zr+1;λr+1)− zr∥2

)
(68)

=
p

2
⟨zr+1 − zr, zr+1 + zr − 2y∗(wr, zr+1;λr+1)⟩, (69)

and
D(wr+1, zr+1;λr+1)−D(wr, zr+1;λr+1)

= K(x∗(wr+1, zr+1;λr+1), y∗(wr+1, zr+1;λr+1), wr+1, zr+1;λr+1)

−K(x∗(wr, zr+1;λr+1), y∗(wr, zr+1;λr+1), wr, zr+1;λr+1) (70)

≥ K(x∗(wr+1, zr+1;λr+1), y∗(wr+1, zr+1;λr+1), wr+1, zr+1;λr+1)

−K(x∗(wr+1, zr+1;λr+1), y∗(wr+1, zr+1;λr+1), wr, zr+1;λr+1) (71)

=
p

2

(
∥x∗(wr+1, zr+1;λr+1)− wr+1∥2 − ∥x∗(wr+1, zr+1;λr+1)− wr∥2

)
(72)

=
p

2
⟨wr+1 − wr, wr+1 + wr − 2x∗(wr+1, zr+1;λr+1)⟩, (73)
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which give the desired result.

B.2.3 Proximal Descent Lemma

Lemma 7.

(Proximal Descent) Under A1-A5, suppose that the sequence {xr, yr, wr, zr, ur, λr, ∀r} is gen-
erated by SLM. Assume that yr is bounded and p > L, then the proximal descent inequality
holds, namely,

P (wr+1, zr+1)− P (wr, zr)

≤ p(zr+1 − zr)T (zr − ȳ∗(wr, zr)) + p(wr+1 − wr)T (wr − x̄∗(wr, zr+1))

+
p

2

(
p

p− L
+ 1

)(
∥zr+1 − zr∥2 + ∥wr+1 − wr∥2

)
. (74)

Proof. First, note that K(x, y, w, z;λ) is strongly convex w.r.t. x and y jointly with parameter
p − L. Under A2, A5 and the assumption that yr is bounded, we can obtain that ∇zP (w

r, zr) =
p(zr − ȳ∗(wr, zr)) by applying the Danskin’s theorem in the convex analysis [48]. Then, using the
primal error bound (27c), we can show that ∇zP (x

r) has a Lipschitz constant, i.e.,

∥∇P (wr, zr+1)−∇P (wr, zr)∥ ≤ p

(
p

p− L
+ 1

)
∥zr+1 − zr∥. (75)

Therefore, it is straightforward that

P (wr, zr+1)−P (wr, zr) ≤ p(zr+1−zr)T (zr−ȳ∗(wr, zr))+
p

2

(
p

p− L
+ 1

)
∥zr+1−zr∥2. (76)

Similarly, we have

∥∇wP (w
r+1, zr+1)−∇wP (w

r, zr+1)∥ ≤ p

(
p

p− L
+ 1

)
∥wr+1 − wr∥, (77)

which gives

P (wr+1, zr+1)− P (wr, zr+1)

≤ p(wr+1 − wr)T (wr − x̄∗(wr, zr+1)) +
p

2

(
p

p− L
+ 1

)
∥wr+1 − wr∥2. (78)

B.3 Dual Error Bounds

B.3.1 Proof of Weak Dual Error Bound (Lemma 2)

Lemma 2 (Formal)

Under A1-A5, suppose that λ, ȳ∗(w, z) are bounded and p > L, then the weak error bound
holds, namely,

∥y∗(w, z;λ+(w, z))− ȳ∗(w, z)∥2 + ∥x∗(w, z;λ+(w, z))− x̄∗(w, z)∥2

≤ σweak∥λ− λ+(w, z)∥∥λ(w, z)− λ+(w, z)∥ (79)

where

σweak ,
1 + τ(2ℓg + ℓ′g)σ2

2τ(p− L)
, and σ2 , p+ L

p− L
. (80)

Proof. First, let

λ+(v) = P+ [λ+ τ∇λK(x∗(v;λ), y∗(v;λ), v;λ)] , (81a)
λ(v) ∈ arg max

0≤λ≤Λ
K(x̄∗(v), ȳ∗(v), v;λ). (81b)
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Based on the strong convexity of K(x, ·, w, z;λ) and K(·, y, w, z;λ), we have
K(x̄∗(v), ȳ∗(v), v;λ+(v))−K(x∗(v;λ+(v)), ȳ

∗(v), v;λ+(v))

≥ p− L

2
∥x∗(v;λ+(v))− x̄∗(v)∥2, (82a)

K(x∗(v;λ+(v)), ȳ
∗(v), v;λ+(v))−K(x∗(v;λ+(v)), y

∗(v;λ+(v)), v;λ+(v))

≥ p− L

2
∥y∗(v;λ+(v))− ȳ∗(v)∥2, (82b)

K(x∗(v;λ+(v)), y
∗(v;λ+(v)), v;λ(v))−K(x∗(v;λ+(v)), ȳ

∗(v), v;λ(v))

≥ p− L

2
∥y∗(v;λ+(v))−ȳ∗(v)∥2, (82c)

K(x∗(v;λ+(v)), ȳ
∗(v), v;λ(v))−K(x̄∗(v), ȳ∗(v), v;λ(v))

≥ p− L

2
∥x∗(v;λ+(v))−x̄∗(v)∥2. (82d)

Note that λ+(v) is the maximizer of the following problem.
max

0≤λ̄≤Λ
τK(x∗(v;λ+(v)), y

∗(v;λ+(v)), v; λ̄)− δT (v;λ, λ+(v))λ̄ (83)

where
δ(v;λ, λ+(v)) = (λ+(v) + τ∇λK(x∗(v;λ+(v)), y

∗(v;λ+(v)), v;λ+(v)))

− (λ+ τ∇λK(x∗(v;λ), y∗(v;λ), v;λ)) . (84)

According to the Lipschitz continuity of ∇λK, we have
∥δ(v;λ, λ+(v))∥

≤ ∥λ+(v)− λ∥+ τ∥g(x∗(v;λ+(v)), y∗(v;λ+(v)))− g(x∗(v;λ), y∗(v;λ))∥
+ τ∥g∗(x∗(v;λ+(v)))− g∗(x∗(v;λ))∥ (85)

(a)

≤
(
1 + τ(2ℓg + ℓ′g)σ2

)
∥λ− λ+(v)∥ (86)

where in (a) we use the primal error bounds (28a), (28b), and apply the Lipschitz continuity of g(, )
and g∗().

Based on the definition of λ+(v) (cf. (81a)), we have
τK(x∗(v;λ+(v)), y

∗(v;λ+(v)), v;λ(v))− δT (v;λ, λ+(v))λ(v)

≤ τK(x∗(v;λ+(v)), y
∗(v;λ+(v)), v;λ+(v))− δT (v;λ, λ+(v))λ+(v). (87)

Subsequently, we can obtain
τK(x∗(v;λ+(v)), y

∗(v;λ+(v)), v;λ(v))− τK(x∗(v;λ+(v)), y
∗(v;λ+(v)), v;λ+(v))

≤ (λ(v)− λ+(v))
T
δ(v;λ, λ+(v)) (88)

(86)
≤ ∥λ(v)− λ+(v)∥

(
1 + τ(2ℓg + ℓ′g)σ2

)
∥λ− λ+(v)∥. (89)

According to the definition of λ(v) (cf. (81b)), we have
K(x̄∗(v), ȳ∗(v), v;λ(v)) ≥ K(x̄∗(v), ȳ∗(v), v;λ+(v)). (90)

Combing (82a) to (82d), and (90) yields
2τ(p− L)

(
∥y∗(v;λ+(v))− ȳ∗(v)∥2 + ∥x∗(v;λ+(v))− x̄∗(v)∥2

)
≤ ∥λ(v)− λ+(v)∥

(
1 + τ(2ℓg + ℓ′g)σ2

)
∥λ− λ+(v)∥. (91)

Therefore, we have
∥y∗(wr, zr;λ+(w

r, zr))− ȳ∗(wr, zr)∥2 + ∥x∗(wr, zr+1;λ+(w
r, zr))− x̄∗(wr, zr)∥2

≤
1 + τ(2ℓg + ℓ′g)σ2

2τ(p− L)︸ ︷︷ ︸
,σweak

∥λr+1 − λ+(w
r, zr)∥∥λ(wr, zr)− λ+(w

r, zr)∥. (92)
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B.3.2 Proof of Auxiliary Dual Error Bound

Lemma 8.

Assume that A1-A3, A5 are satisfied and that the local regularity condition holds. Suppose that
λ, yr, y∗(v;λ) are bounded, then the following inequality holds.

∥λ(w, z)− λ+(w, z)∥
≤ σaux (∥y∗(w, z;λ+(w, z))− ȳ∗(w, z)∥+ ∥x∗(w, z;λ+(w, z))− x̄∗(w, z)∥) (93)

where
σaux ,

Lf + p+ ΛLg√
2µgδ

. (94)

Proof. From the optimality condition of the block-y update and by following the notations defined
in the proof of Lemma 2, we have

∇yf(x̄
∗(v), ȳ∗(v)) + λ(v)∇yg(x̄

∗(v), ȳ∗(v)) + p(ȳ∗(v)− z) = 0, (95a)
∇yf(x

∗(v;λ+(v)), y
∗(v;λ+(v)))

+λ+(v)∇yg(x
∗(v;λ+(v)), y

∗(v;λ+(v))))+p(y
∗(v;λ+(v))− z)=0. (95b)

Taking difference of these two equations and using the Lipschitz continuity ∇yg(, ), we have

∥ (λ(v)− λ+(v))∇yg(x̄
∗(v), ȳ∗(v))∥

≤ ∥∇yf(x̄
∗(v), ȳ∗(v))−∇yf(x

∗(v;λ+(v)), y
∗(v;λ+(v)))∥

+ λ+(v)∥∇yg(x̄
∗(v), ȳ∗(v))−∇yg(x

∗(v;λ+(v)), y
∗(v;λ+(v)))∥+ p∥ȳ∗(v)− y∗(v;λ+(v))∥

≤ (Lf + p+ ΛLg) (∥ȳ∗(v)− y∗(v;λ+(v))∥+ ∥x̄∗(v)− x∗(v;λ+(v))∥) . (96)

Further, we know that the left hand side (LHS) of (96) has a lower bound, i.e.,

∥(λ(v)− λ+(v))∇yg(x̄
∗(v), ȳ∗(v))∥

(a)

≥ |λ(v)− λ+(v)|
√
2µg(g(x̄∗(v), ȳ∗(v))− g∗(x∗(v))) (97)

(b)

≥ |λ(v)− λ+(v)|
√

2µgδ (98)

where in (a) we apply the PŁ condition, and (b) results from the regularity condition.

B.3.3 Proof of Strong Dual Error Bound (Lemma 3)
Lemma 3 (Formal)

Assume that A1-A5 are satisfied and that the local regularity condition holds. Suppose that
λ, ȳ∗(w, z), ∀r are bounded and p > L, then the strong error bound holds, namely, there exists
a constant σstrong such that

∥y∗(wr, zr;λr+1
+ (wr, zr))− ȳ∗(wr, zr)∥+ ∥x∗(wr, zr;λr+1

+ (wr, zr))− x̄∗(wr, zr)∥
≤ 2σstrongτ |g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ| (99)

where
σstrong , σweakσaux = σweak

Lf + p+ ΛLg√
2µgδ

. (100)

Proof. Under the assumptions that p > L, and λr, yr, ȳ∗(wr, zr) are bounded, combing (14) and
(93) yields the following strong error bound.

1

2

(
∥y∗(wr, zr;λr+1

+ (wr, zr))− ȳ∗(wr, zr)∥+ ∥x∗(wr, zr;λr+1
+ (wr, zr))− x̄∗(wr, zr)∥

)2
≤ σweakσaux︸ ︷︷ ︸

,σstrong

∥λr+1 − λ+(w
r, zr)∥

·
(
∥y∗(wr, zr;λr+1

+ (wr, zr))− ȳ∗(wr, zr)∥+ ∥x∗(wr, zr;λr+1
+ (wr, zr))− x̄∗(wr, zr)∥

)
,
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which gives

∥y∗(wr, zr;λr+1
+ (wr, zr))− ȳ∗(wr, zr)∥+ ∥x∗(wr, zr;λr+1

+ (wr, zr))− x̄∗(wr, zr)∥
≤ 2σstrong∥λr+1 − λr+1

+ (wr, zr)∥ (101)
(81a)
≤ 2σstrong τ |∇λK(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1), zr;λr+1)| (102)

≤ 2σstrongτ |g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ|. (103)

B.4 Proof of Potential function (Lemma 1)

Lemma 1 (Formal)

Assume that A1-A5 are satisfied. Suppose that the sequence {xr, yr, wr, zr, ur, λr, ∀r} is gen-
erated by SLM, p > L, and λr, yr, ȳ∗(wr, zr) are bounded. When γ, η, α, T r respectively
satisfy (30),(41) and T r ≥ −2 log(1−2γµg)(

√
τr), then, there exists a constant ζ such that

Q(xr+1, yr+1, wr+1, zr+1;λr+1)−Q(xr, yr, wr, zr;λr)

≤ −

(
1

4η
−

17τ(ℓ2g + ℓ′2g )σ
2
3

η2

)
∥xr+1 − xr∥2 −

(
1

2α
−

9τℓ2gσ
2
3

α2

)
∥yr+1 − yr∥2

− p

(
1

2β
−
(
1

ζ
+

2p

p− L
+ 36ζσ2

1

))
∥zr+1 − zr∥2 − p

(
1

2β
−
(
1

ζ
+

2p

p− L

))
∥wr+1 − wr∥2

+ 36pζ∥x∗(wr, zr;λr+1
+ (wr, zr))− x̄∗(wr, zr)∥2

+ 36pζ∥y∗(wr, zr;λr+1
+ (wr, zr))− ȳ∗(wr, zr)∥2

− τ

(
1

56
− 48pζσ2

2τ

)
|g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ|2

+
(
µgL

2
g + 2ℓ2g

) DS

r2
− 1

4τ
∥λr+1 − λr∥2 (104)

where

Qr , Q(xr, yr, wr, zr;λr) , K(xr, yr, wr, zr;λr)− 2D(wr, zr;λr) + 2P (wr, zr). (105)

Proof. Recall that

Qr = K(xr, yr, wr, zr;λr)− 2D(wr, zr;λr) + 2P (wr, zr). (106)

Merging (42), (61), and (74) gives

Qr+1 −Qr

≤−
(

1

4η
∥xr+1 − xr∥2 + 1

2α
∥yr+1 − yr∥2 + p

2β
∥zr+1 − zr∥2 + p

2β
∥wr+1 − wr∥2

)
+ ⟨g(xr, yr)− g∗(xr)− δ, λr+1 − λr⟩
− 2⟨λr+1 − λr, g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ)⟩
−p⟨zr+1 − zr, zr+1 + zr − 2y∗(wr, zr+1;λr+1)⟩ − 2p(zr+1 − zr)T (ȳ∗(wr, zr)− zr)︸ ︷︷ ︸

,T1

−p⟨wr+1 − wr, wr+1 + wr − 2x∗(wr+1, zr+1;λr+1)⟩ − 2p(wr+1 − wr)T (x̄∗(wr, zr+1)− wr)︸ ︷︷ ︸
,T2

+ p

(
p

p− L
+ 1

)(
∥zr+1 − zr∥2 + ∥wr+1 − wr∥2

)
+
µgL

2
gDS

r2
. (107)
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First, we can get the upper bound of term T1 as follows:

T1 = −p
⟨
zr+1 − zr, zr+1 − zr − 2

(
y∗(wr, zr+1;λr+1)− ȳ∗(wr, zr)

)⟩
= −p

⟨
zr+1 − zr, zr+1 − zr − 2

(
y∗(wr, zr+1;λr+1)− y∗(wr, zr;λr+1)

)⟩
− p

⟨
zr+1 − zr, y∗(wr, zr;λr+1)− ȳ∗(wr, zr)

⟩
(108)

= −p∥zr+1 − zr∥2 + 2p
⟨
zr+1 − zr, y∗(wr, zr+1;λr+1)− y∗(wr, zr;λr+1)

⟩
− p

⟨
zr+1 − zr, y∗(wr, zr;λr+1)− ȳ∗(wr, zr)

⟩
. (109)

For the last term of the above inequality, we can further have

p
⟨
zr+1 − zr, y∗(wr, zr;λr+1)− ȳ∗(wr, zr)

⟩
≤ p∥zr+1 − zr∥2

2ζ
+
pζ

2
∥y∗(wr, zr;λr+1)− ȳ∗(wr, zr)∥2. (110)

For the second term of (109), we can get⟨
zr+1 − zr, y∗(wr, zr+1;λr+1)− y∗(wr, zr;λr+1)

⟩
(a)

≤ ∥zr+1 − zr∥∥y∗(wr, zr+1;λr+1)− y∗(wr, zr;λr+1)∥ (111)
(b)

≤ p

p− L
∥zr+1 − zr∥2 (112)

where (a) is true by applying the Cauchy-Schwarz inequality, in (b) we use the primal error bound
(27a).

Similarly, we have

T2 = −p
⟨
wr+1 − wr, wr+1 − wr − 2

(
x∗(wr+1, zr+1;λr+1)− x̄∗(wr, zr+1)

)⟩
= −p

⟨
wr+1 − wr, wr+1 − wr − 2

(
x∗(wr+1, zr+1;λr+1)− x∗(wr, zr+1;λr+1)

)⟩
− p

⟨
wr+1 − wr, x∗(wr, zr+1;λr+1)− x̄∗(wr, zr+1)

⟩
(113)

= −p∥wr+1 − wr∥2 + 2p
⟨
wr+1 − wr, x∗(wr+1, zr+1;λr+1)− x∗(wr, zr+1;λr+1)

⟩
− p

⟨
wr+1 − wr, x∗(wr, zr+1;λr+1)− x̄∗(wr, zr+1)

⟩
. (114)

For the last term of the above inequality, we can further have

p
⟨
wr+1 − wr, x∗(wr, zr+1;λr+1)− x̄∗(wr, zr+1)

⟩
≤ p∥wr+1 − wr∥2

2ζ
+
pζ

2
∥x∗(wr, zr+1;λr+1)− x̄∗(wr, zr+1)∥2. (115)

In addition, we have⟨
wr+1 − wr, x∗(wr+1, zr+1;λr+1)− y∗(wr, zr+1;λr+1)

⟩
(a)

≤ ∥wr+1 − wr∥∥x∗(wr+1, zr+1;λr+1)− x∗(wr, zr+1;λr+1)∥ (116)
(b)

≤ p

p− L
∥wr+1 − wr∥2 (117)

where (a) is true by applying the Cauchy-Schwarz inequality, in (b) we use the primal error bound
(27b).
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Substituting (110), (112), (115), (117) into (107) yields

Qr+1 −Qr

≤−
(

1

4η
∥xr+1 − xr∥2 + 1

2α
∥yr+1 − yr∥2

)
− p

(
1

2β
−
(
1

ζ
+

2p

p− L

))
∥zr+1 − zr∥2

− p

(
1

2β
−
(
1

ζ
+

2p

p− L

))
∥wr+1 − wr∥2

+ pζ
(
∥x∗(wr, zr+1;λr+1)− x̄∗(wr, zr+1)∥2 + ∥y∗(wr, zr;λr+1)− ȳ∗(wr, zr)∥2

)
+
µgL

2
gDS

r2

+ ⟨g(xr, yr)− g∗(xr)− δ, λr+1 − λr⟩
− 2⟨λr+1 − λr, g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ)⟩. (118)

Second, we will give an upper bound of the last two terms of (118) as follows.

Step 1.) From the update of the dual variable, we can have

⟨g(xr, yr)− g(xr, ur+1)− δ, λr+1 − λr⟩ ≥ 1

τ
∥λr+1 − λr∥2, (119)

which is equivalent to

−⟨g(xr, yr)− g(xr, ur+1)− δ, λr+1 − λr⟩ ≤ −1

τ
∥λr+1 − λr∥2. (120)

Therefore, we can obtain

⟨g(xr, yr)− g∗(xr)− δ, λr+1 − λr⟩
= ⟨g(xr, yr)− g∗(xr)− δ, λr+1 − λr⟩+ ⟨g(xr, yr)− g(xr, ur+1)− δ, λr+1 − λr⟩
− ⟨g(xr, yr)− g(xr, ur+1)− δ, λr+1 − λr⟩ (121)

≤ 2⟨g(xr, yr)− g∗(xr)− δ, λr+1 − λr⟩+ ⟨g∗(xr)− g(xr, ur+1), λr+1 − λr⟩

− 1

τ
∥λr+1 − λr∥2. (122)

Subsequently, we can derive an upper bound for the sum of the last two terms in (118) as follows.

2⟨g(xr, yr)− g∗(xr), λr+1 − λr⟩
− 2⟨g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1)), λr+1 − λr⟩

+ ⟨λr+1 − λr, g∗(xr)− g(xr, ur+1)⟩ − 1

τ
∥λr+1 − λr∥2 (123)

(a)

≤ 4τ
(
∥g(xr, yr)− g∗(xr)− (g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1)))∥2

)
+ τ∥g∗(xr)− g(xr, ur+1)∥2 − 1

2τ
∥λr+1 − λr∥2 (124)

≤ 8τ
(
2(ℓ2g + ℓ′2g )∥x∗(wr, zr;λr+1)− xr∥2 + ℓ2g∥y∗(wr, zr;λr+1)− yr∥2

)
+ τ∥g∗(xr)− g(xr, ur+1)∥2 − 1

2τ
∥λr+1 − λr∥2 (125)

(b)

≤ 8τσ2
3

(
2(ℓ2g + ℓ′2g )

η2
∥xr+1 − xr∥2 +

ℓ2g
α2

∥yr+1 − yr∥2
)

+ τ∥g∗(xr)− g(xr, ur+1)∥2 − 1

2τ
∥λr+1 − λr∥2 (126)

where in (a) we use the Cauchy-Schwarz inequality, in (b) we apply the primal error bounds (29a)
and (29b).
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Step 2.) Applying the reverse triangle inequality, we can get

∥λr+1 − λr∥2

= ∥λr+1 − λr+1
+ (wr, zr) + λr+1

+ (wr, zr)− λr∥2 (127)

≥
∥λr+1

+ (wr, zr)− λr∥2

2
− ∥λr+1 − λr+1

+ (wr, zr)∥2. (128)

According to the definition of λ+(wr, zr) (cf. (81a)), we have

∥λr+1 − λr+1
+ (wr, zr)∥2

(a)

≤ ∥λr + τ(g(xr, yr)− g(xr, ur+1)− δ)− [λr+1 + τ∇λK(x∗(vr;λr+1), y∗(vr;λr+1), vr;λr+1)]∥2

≤ 2∥λr+1 − λr∥2

+ 2τ2
(
∥g(xr, yr)− g(xr, ur+1)− (g(x∗(vr;λr+1), y∗(vr;λr+1))− g∗(x∗(vr;λr+1)))∥2

)
≤ 2∥λr+1 − λr∥2 + 6τ2

(
2(ℓ2g + ℓ′2g )∥xr − x∗(vr;λr+1)∥2 + ℓ2g∥yr − y∗(vr;λr+1)∥2

)
+ 6τ2∥g(xr, ur+1)− g∗(xr)∥2 (129)

where (a) is true due to the nonexpansiveness of the nonnegative projection operator. Also, we have

∥λr − λr+1
+ (wr, zr)∥2

= ∥λr − [λr+1 + τ∇λK(x∗(vr;λr+1), y∗(vr;λr+1), vr;λr+1)]∥ (130)

≥ ∥τ∇λK(x∗(vr;λr+1), y∗(vr;λr+1), vr;λr+1)∥2

2
− ∥λr+1 − λr∥2. (131)

Combining (128), (129), and (131) gives

7

2
∥λr+1 − λr∥2

≥ ∥τ∇λK(x∗(vr;λr+1), y∗(vr;λr+1), vr;λr+1)∥2

4

− 6τ2
(
2(ℓ2g + ℓ′2g )∥xr − x∗(vr;λr+1)∥2 + ℓ2g∥yr − y∗(vr;λr+1)∥2

)
− 6τ2∥g(xr, ur+1)− g∗(xr)∥2. (132)

Applying the primal error bounds (29a) and (29b), we can obtain

− 1

4τ
∥λr+1 − λr∥2

≤ −τ∥∇λK(x∗(vr;λr+1), y∗(vr;λr+1), vr;λr+1)∥2

56

+
3τ

7

(
2(ℓ2g + ℓ′2g )∥xr − x∗(vr;λr+1)∥2 + ℓ2g∥yr − y∗(vr;λr+1)∥2 + ∥g(xr, ur+1)− g∗(xr)∥2

)
.

(133)

≤ −τ∥g(x
∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ∥2

56

+
3τ

7

(
2(ℓ2g + ℓ′2g )σ

2
3

η2
∥xr − xr+1∥2 +

ℓ2gσ
2
3

α2
∥yr − yr+1∥2 + ∥g(xr, ur+1)− g∗(xr)∥2

)
.

(134)
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Step 3.) Substituting (134) and (126) back to (118) gives
Qr+1 −Qr

≤ −

(
1

4η
−

17τ(ℓ2g + ℓ′2g )σ
2
3

η2

)
∥xr+1 − xr∥2 −

(
1

2α
−

9τℓ2gσ
2
3

α2

)
∥yr+1 − yr∥2

− p

(
1

2β
−
(
1

ζ
+

2p

p− L

))
∥zr+1 − zr∥2 − p

(
1

2β
−
(
1

ζ
+

2p

p− L

))
∥wr+1 − wr∥2

+ 6pζ
(
∥y∗(wr, zr;λr+1)− ȳ∗(wr, zr)∥2 + ∥x∗(wr, zr+1;λr+1)− x̄∗(wr, zr+1)∥2

)
− τ

56
|g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ|2

+
µgL

2
gDS

r2
+ 2τ∥g(xr, ur+1)− g∗(xr)∥2 − 1

4τ
∥λr+1 − λr∥2. (135)

Finally, by observing the weak dual error bound, we need to further quantify ∥y∗(wr, zr;λr+1) −
ȳ∗(wr, zr)∥2 + ∥x∗(wr, zr+1;λr+1)− x̄∗(wr, zr+1)∥2 as follows. Note that

∥y∗(wr, zr;λr+1)− ȳ∗(wr, zr)∥2 + ∥x∗(wr, zr+1;λr+1)− x̄∗(wr, zr+1)∥2

≤ ∥y∗(wr, zr;λr+1)− ȳ∗(wr, zr)∥2 + 3∥x∗(wr, zr;λr+1)− x̄∗(wr, zr)∥2

+ 3∥x∗(wr, zr+1;λr+1)− x∗(wr, zr;λr+1)∥2 + 3∥x̄∗(wr, zr+1)− x̄∗(wr, zr)∥2 (136)
(a)

≤ 2∥y∗(wr, zr;λr+1
+ (wr, zr))− ȳ∗(wr, zr)∥2 + 6∥x∗(wr, zr;λr+1

+ (wr, zr))− x̄∗(wr, zr)∥2

+ 2∥y∗(wr, zr;λr+1)− y∗(wr, zr;λr+1
+ (wr, zr))∥2

+ 6∥x∗(wr, zr;λr+1)− x∗(wr, zr;λr+1
+ (wr, zr))∥2 + 6σ2

1∥zr+1 − zr∥2 (137)
(b)

≤ 2∥y∗(wr, zr;λr+1
+ (wr, zr))− ȳ∗(wr, zr)∥2 + 6∥x∗(wr, zr;λr+1

+ (wr, zr))− x̄∗(wr, zr)∥2

+ 8σ2
2τ

2
∥∥g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g(x∗(wr, zr;λr+1))− δ

∥∥2
+ 6σ2

1∥zr+1 − zr∥2 (138)
where in (a) we use the primal error bounds (27a) and (27c), (b) holds as we first apply the primal
error bounds (28a) and (28b) and then use the definition λ+(w, z) as follows

∥λr+1 − λr+1
+ (wr, zr)∥

= ∥λr+1 − P≥0

[
λr+1 + τ∇λK(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1), wr, zr;λr+1)

]
∥ (139)

≤ τ
∥∥g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g(x∗(wr, zr;λr+1))− δ

∥∥ . (140)
As a result, we can get

Qr+1 −Qr

≤ −

(
1

4η
−

17τ(ℓ2g + ℓ′2g )σ
2
3

η2

)
∥xr+1 − xr∥2 −

(
1

2α
−

9τℓ2gσ
2
3

α2

)
∥yr+1 − yr∥2

− p

(
1

2β
−
(
1

ζ
+

2p

p− L
+ 36ζσ2

1

))
∥zr+1 − zr∥2 − p

(
1

2β
−
(
1

ζ
+

2p

p− L

))
∥wr+1 − wr∥2

+ 36pζ
(
∥y∗(wr, zr;λr+1

+ (wr, zr))− ȳ∗(wr, zr)∥2 + ∥x∗(wr, zr;λr+1
+ (wr, zr))− x̄∗(wr, zr)∥2

)
− τ

(
1

56
− 48pζσ2

2τ

)
|g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ|2

+
µgL

2
gDS

r2
+ 2τ∥g(xr, ur+1)− g∗(xr)∥2 − 1

4τ
∥λr+1 − λr∥2 (141)

From Lemma 4, we know that d2S(xr)(u
r+1) ≤ (1− 2γµg)

T r

DS , so when T r ≥
−2 log(1−2γµg)(

√
τr),

2τ∥g(xr, ur+1)− g∗(xr)∥2 ≤
2ℓ2gDS

r2
. (142)

Substituting (142) back to (141) gives the desired result.
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B.5 Descent of Potential Function

Lemma 9.

Assume that A1-A5 are satisfied and that the local regularity condition holds. Sup-
pose that the sequence {xr, yr, wr, zr, ur, λr, ∀r} is generated by SLM, p > L, and
λr, yr, ȳ∗(wr, zr), y∗(wr, zr;λr+1) are bounded. When the step-sizes are chosen such that

γ ≤ min

{
1

Lg
,

1

2µg

}
, η ≤ min

{
1

LK
,

(p− L)2

136τ(ℓ2g + ℓ′2g )L
2
K

}
,

α ≤ min

{
1

LK
,
(p− L)2

36τℓ2gL
2
K

}
, τ ≤ min

{
(p− L)2

3456pζ(p+ L)2
,

1/(126 · 48)
pζmax{σ2

strong, σ
2
2}

}
,

T r ≥max
{
−2 log1−2γµg

(λr+1√ηr),−2 log1−2γµg
r
√
τ
}
,

β ≤ 1/4
1
ζ + 2p

p−L + 36ζp2

(p−L)2

≤ 1, ζ ≤
√
ϱ

2
max

{
1

ζ1
,
1

ζ2

}
, ϑ ≤ ϱ

τζ3
, (143)

then, we have

Qr+1 −Qr

≤ − 1

24η
∥xr+1 − xr∥2 − 1

12α
∥yr+1 − yr∥2 − p

12β
∥zr+1 − zr∥2 − p

12β
∥wr+1 − wr∥2

− τ

189
|g(x∗(vr;λr+1)), y∗(vr;λr+1))− g∗(x∗(vr;λr+1))− δ|2

− 1

4τ
∥λr+1 − λr∥2 +

(
µgL

2
g + 2ℓ2g

) DS

r2
(144)

where σstrong , σweakσaux, and ζ1, ζ2, ζ3 are defined in (171) and (174).

Proof. From (104), it is clear that if we can select the step-sizes properly so that the coefficients in
front of ∥xr+1 − xr∥2, ∥yr+1 − yr∥2, ∥zr+1 − zr∥2, ∥wr+1 − wr∥2 are strictly negative, then the
potential function Qr will be decreasing. To be more specific, the step-sizes are chosen as follows.

1) Selection of η. Given the condition of (41), we request

1

4η
−

17τ(ℓ2g + ℓ′2g )σ
2
3

η2
=

1

4η
−

17τ(ℓ2g + ℓ′2g )

η2(p− L)2
>

1

8η
> 0, (145)

i.e.,

η <
(p− L)2

136τ(ℓ2g + ℓ′2g )L
2
K

. (146)

2) Selection of α.
1

2α
−

9τℓ2gσ
2
3

α2
=

1

2α
−

9τℓ2g
α2(p− L)2

>
1

4α
> 0, (147)

i.e.,

α <
(p− L)2

36τℓ2gL
2
K

. (148)

3) Selection of β.
1

2β
−
(
1

ζ
+

2p

p− L
+ 36ζσ2

1

)
>

1

4β
> 0, (149)

i.e.,

β <
1

4

1
1
ζ + 2p

p−L + 36ζp2

(p−L)2

. (150)

4) Selection of τ .
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We need
1

56
− 48pζσ2

2τ ≥ 1

63
> 0, (151)

i.e.,

τ ≤ (p− L)2

3456pζ(p+ L)2
. (152)

Then, consider the following two cases:

Case 1.

1

3
max

{
1

8η
∥xr+1 − xr∥2, 1

4α
∥yr+1 − yr∥2, p

4β
∥zr+1 − zr∥2, p

4β
∥wr+1 − wr∥2,

τ

63
|g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ|2

}
> max

{
36pζ

(
∥y∗(wr, zr;λr+1

+ (wr, zr))− ȳ∗(wr, zr)∥2

+ ∥x∗(wr, zr;λr+1
+ (wr, zr))− x̄∗(wr, zr)∥2

)
, ϑτ} (153)

where ϑ is some parameter.

In this case, we can have

Qr+1 −Qr ≤ − 1

24η
∥xr+1 − xr∥2 − 1

12α
∥yr+1 − yr∥2 − p

12β
∥zr+1 − zr∥2 − p

12β
∥wr+1 − wr∥2

− τ

189
|g(x∗(vr;λr+1)), y∗(vr;λr+1))− g∗(x∗(vr;λr+1))− δ|2

− ϑτ − 1

4τ
∥λr+1 − λr∥2 +

(
µgL

2
g + 2ℓ2g

) DS

r2
, (154)

meaning that Qr is decreasing up to some constant at each step.

Case 2.

1

3
max

{
1

8η
∥xr+1 − xr∥2, 1

4α
∥yr+1 − yr∥2, p

4β
∥zr+1 − zr∥2, p

4β
∥wr+1 − wr∥2,

τ

63
|g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ|2

}
≤ max{36pζ

(
∥y∗(wr, zr;λr+1

+ (wr, zr))− ȳ∗(wr, zr)∥2

+ ∥x∗(wr, zr;λr+1
+ (wr, zr))− x̄∗(wr, zr)∥2

)
, ϑτ}. (155)

First, if 36pζ
(
∥y∗(wr, zr;λr+1

+ (wr, zr)) − ȳ∗(wr, zr)∥2 + ∥x∗(wr, zr;λr+1
+ (wr, zr)) −

x̄∗(wr, zr)∥2
)
≥ ϑτ , then we have the following results.

Recall the weak error bound

∥y∗(w, z;λ+(w, z))− ȳ∗(w, z)∥2 + ∥x∗(w, z;λ+(w, z))− x̄∗(w, z)∥2

≤ σweak∥λ− λ+(w, z)∥∥λ(w, z)− λ+(w, z)∥ (156)

where λ(v) ∈ argmax0≤λ≤ΛK(x̄∗(v), ȳ∗(v), v;λ).

We can get

∥y∗(wr, zr;λr+1
+ (wr, zr))− ȳ∗(wr, zr)∥2 + ∥x∗(wr, zr;λr+1

+ (wr, zr))− x̄∗(wr, zr)∥2

≤σweak2Λ︸ ︷︷ ︸
,σ̄w

τ
∥∥g(x∗(vr;λr+1), y∗(vr;λr+1))− g(x∗(vr;λr+1))− δ

∥∥ , (157)

which gives

∥g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g(x∗(wr, zr;λr+1))− δ∥ ≤ 3 · 63 · 36pζσ̄w. (158)
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Then, we can have
p

4β
∥zr+1 − zr∥2

≤ 3 · 36pζ
(
∥y∗(wr, zr;λr+1

+ (wr, zr))− ȳ∗(wr, zr)∥2 + ∥x∗(wr, zr;λr+1
+ (wr, zr))− x̄∗(wr, zr)∥2

)
≤ 3 · 36pζσ̄w

∥∥g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g(x∗(wr, zr;λr+1))− δ
∥∥ (159)

≤ 32 · 63 · 362p2ζ2σ̄2
w. (160)

Similarly,{
1

8η
∥xr+1 − xr∥2, 1

4α
∥yr+1 − yr∥2, p

4β
∥wr+1 − wr∥2

}
≤ 32 · 63 · 362p2ζ2σ̄2

w. (161)

These results imply that the iterates generated by SLM will converge to some point within a ball
with a radius of O(p2ζ2σ̄2

w).

Further, note that

∥wr − x∗(wr, zr)∥2 + ∥zr − y∗(wr, zr)∥2

= ∥wr − xr+1 + xr+1 − x∗(wr, zr)∥2 + ∥zr − yr+1 + yr+1 − y∗(wr, zr)∥2

≤ 2

β2

(
∥wr+1 − wr∥2 + ∥zr+1 − zr∥2

)
+ 2

(
∥xr+1 − x∗(wr, zr)∥2 + ∥yr+1 − y∗(wr, zr)∥2

)
=

2

β2

(
∥wr+1 − wr∥2 + ∥zr+1 − zr∥2

)
+ 2∥xr+1 − x∗(wr, zr;λr+1) + x∗(wr, zr;λr+1)− x∗(wr, zr)∥2

+ 2∥yr+1 − y∗(wr, zr;λr+1) + y∗(wr, zr;λr+1)− y∗(wr, zr)∥2 (162)

≤ 2

β2

(
∥wr+1 − wr∥2 + ∥zr+1 − zr∥2

)
+ 4∥xr+1 − x∗(wr, zr;λr+1)∥2 + 4∥x∗(wr, zr;λr+1)− x∗(wr, zr)∥2

+ 4∥yr+1 − y∗(wr, zr;λr+1)∥2 + 4∥y∗(wr, zr;λr+1)− y∗(wr, zr)∥2. (163)

By following the steps from (136) to (138), we have

∥y∗(wr, zr;λr+1)− ȳ∗(wr, zr)∥2 + ∥x∗(wr, zr;λr+1)− x̄∗(wr, zr)∥2

≤ 2∥y∗(wr, zr;λr+1
+ (wr, zr))− ȳ∗(wr, zr)∥2 + 2∥x∗(wr, zr;λr+1

+ (wr, zr))− x̄∗(wr, zr)∥2

+ 2∥y∗(wr, zr;λr+1)− y∗(wr, zr;λr+1
+ (wr, zr))∥2

+ 2∥x∗(wr, zr;λr+1)− x∗(wr, zr;λr+1
+ (wr, zr))∥2 (164)

≤ 2∥y∗(wr, zr;λr+1
+ (wr, zr))− ȳ∗(wr, zr)∥2 + 2∥x∗(wr, zr;λr+1

+ (wr, zr))− x̄∗(wr, zr)∥2

+ 4σ2
2τ

2
∥∥g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g(x∗(wr, zr;λr+1))− δ

∥∥2 . (165)

Combining (163) and (165) yields

∥wr − x∗(wr, zr)∥2 + ∥zr − y∗(wr, zr)∥2 (166)

≤ 4

((
1 + η(p− L)

η(p− L)

)2

∥xr+1 − xr∥2 +
(
1 + α(p− L)

α(p− L)

)2

∥yr+1 − yr∥2
)

+
2

β2

(
∥wr+1 − wr∥2 + ∥zr+1 − zr∥2

)
+ 8∥y∗(wr, zr;λr+1

+ (wr, zr))− ȳ∗(wr, zr)∥2 + 8∥x∗(wr, zr;λr+1
+ (wr, zr))− x̄∗(wr, zr)∥2

+ 16σ2
2τ

2
∥∥g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g(x∗(wr, zr;λr+1))− δ

∥∥2 (167)

≤ 8

(
4η

(
1 + η(p− L)

η(p− L)

)2

+ 2α

(
1 + α(p− L)

α(p− L)

)2

+
8

pβ

)
32 · 63 · 362p2ζ2σ̄2

w

+
(
8σ̄wτ + 16σ2

2τ
2 · (3 · 63 · 36pζσ̄w)

)
(3 · 63 · 36pζσ̄w). (168)
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Therefore, once

8

(
4η

(
1 + η(p− L)

η(p− L)

)2

+ 2α

(
1 + α(p− L)

α(p− L)

)2

+
8

pβ

)
32 · 63 · 362p2ζ2σ̄2

w

+
(
8σ̄wτ + 16σ2

2τ
2 · (3 · 63 · 36pζσ̄w)

)
(3 · 63 · 36pζσ̄w) < ϱ ∼ O(1), (169)

i.e., ζ is small, then, Lemma 8 holds automatically. We can simply choose

ζ ≤
√
ϱ

2
max

{
1

ζ1
,
1

ζ2

}
(170)

where

ζ1 = 3 · 36pσ̄w

√√√√8

(
4η

(
1 + η(p− L)

η(p− L)

)2

+2α

(
1 + α(p− L)

α(p− L)

)2

+
8

pβ

)
+63 · 16σ2

2τ
2, (171a)

ζ2 = 8 · 3 · 63 · 36pτσ̄2
w. (171b)

Second, if 36pζ
(
∥y∗(wr, zr;λr+1

+ (wr, zr)) − ȳ∗(wr, zr)∥2 + ∥x∗(wr, zr;λr+1
+ (wr, zr)) −

x̄∗(wr, zr)∥2
)
≤ ϑτ , then we have the following results.

∥wr − x∗(wr, zr)∥2 + ∥zr − y∗(wr, zr)∥2

≤ 12

((
1 + η(p− L)

η(p− L)

)2

· 8η +
(
1 + α(p− L)

α(p− L)

)2

· 4α

)
ϑτ +

48ϑτ

βp
+

2ϑτ

9ζp
+ 63 · 48σ2

2ϑτ
2.

(172)
It is obvious that when ϑ is small, then the RHS of (172) is less than constant ϱ ∼ O(1), i.e., when

ϑ ≤ ϱ

τζ3
(173)

where

ζ3 = 12

((
1 + η(p− L)

η(p− L)

)2

· 8η +
(
1 + α(p− L)

α(p− L)

)2

· 4α

)
+

48

βp
+

2

9ζp
+ 63 · 48σ2

2τ, (174)

then, Lemma 8 holds automatically.

Given the strong error bound, substituting (103) into (141) yields
Qr+1 −Qr

≤ − 1

8η
∥xr+1 − xr∥2 − 1

4α
∥yr+1 − yr∥2 − p

4β
∥zr+1 − zr∥2 − p

4β
∥wr+1 − wr∥2

− τ

(
1

63
− 12pζ(3σ2

strong + 4σ2
2)τ

)
|g(x∗(vr;λr+1)), y∗(vr;λr+1))− g∗(x∗(vr;λr+1))− δ|2

+
(
µgL

2
g + 2ℓ2g

) DS

r2
− 1

4τ
∥λr+1 − λr∥2. (175)

Following (152), we also require
1

63
− 12pζ(3σ2

strong + 4σ2
2)τ) >

1

126
(176)

i.e.,

τ <
1

126 · 12pζ(3σ2
strong + 4σ2

2)
<

1

126 · 48pζmax{σ2
strong, σ

2
2}
. (177)

When the conditions shown in (146), (148), (150), (152), and (177) are satisfied, we can obtain
Qr+1 −Qr

≤ − 1

8η
∥xr+1 − xr∥2 − 1

4α
∥yr+1 − yr∥2 − p

4β
∥zr+1 − zr∥2 − p

4β
∥wr+1 − wr∥2

− τ

126
|g(x∗(vr;λr+1)), y∗(vr;λr+1))− g∗(x∗(vr;λr+1))− δ|2

+
(
µgL

2
g + 2ℓ2g

) DS

r2
− 1

4τ
∥λr+1 − λr∥2. (178)

This completes the proof.
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B.6 Equivalence of KKT Points between the Saddle Point Problem and Constrained
Optimization

Lemma 10. Consider the following two problems:

(P1) : min
x∈X ,y,g(x,y)−g∗(x)≤δ

f(x, y) +
p

2
∥y − z∥2 + p

2
∥x− w∥2, (179a)

(P2) : min
x∈X ,y

max
0≤λ≤Λ

f(x, y) + λ(g(x, y)− g∗(x)− δ) +
p

2
∥y − z∥2 + p

2
∥x− w∥2. (179b)

Let x∗, y∗, w∗, z∗, λ∗ denote the KKT solutions of P2. If λ∗ ̸= Λ, then the KKT solutions of P2 are
also the KKT solutions of P1.

Proof. It is easy to check that the primal stationary conditions of P1 and P2 are the same. Regarding
the stationarity of dual variable λ, we can apply the saddle point theorem. Note that problem P2 is
strongly convex w.r.t. y and concave w.r.t. y and both feasible sets of x, y are compact. Then, there
exists a saddle point such that

λ∗(g(x∗, y∗)− g∗(x∗)− δ) ≥ λ(g(x∗, y∗)− g∗(x∗)− δ), (180)

which gives λ∗ in following three cases

λ∗ =


Λ if g(x∗, y∗)− g∗(x∗)− δ > 0,

λ if g(x∗, y∗)− g∗(x∗)− δ = 0,

0 if g(x∗, y∗)− g∗(x∗)− δ < 0.

(181)

If λ∗ ̸= Λ, we can obtain

λ∗ ≥ 0, λ∗(g(x∗, y∗)− g∗(x∗)− δ) = 0, (182)

which are the KKT conditions of P1.

Given this result, we can know that P (w, z) defined in (10b) becomes

P (w, z) = min
x∈X ,y,g(x,y)−g∗(x)≤δ

f(x, y) +
p

2
∥x− w∥2 + p

2
∥y − z∥2, (183)

if 0 ≤ λ < Λ. Therefore, when the iterates converge, if the dual variable is strictly less than Λ, the
converged point is the primal-dual (KKT) solution of the original problem.

C Boundedness of Dual Variable, LL Variables, and Potential Function

C.1 Boundedness of Qr

From (13), we know that

Qr(xr, yr, wr, zr;λr)

= K(xr, yr, wr, zr;λr)− 2D(wr, zr;λr) + 2P (wr, zr) (184)
= P (wr, zr) +K(xr, yr, wr, zr;λr)−D(wr, zr;λr) + (P (wr, zr)−D(wr, zr;λr)) (185)
(a)

≥ P (wr, zr) ≥ f (186)

where (a) holds due to 1) K(xr, yr, wr, zr;λr) − D(wr, zr;λr) ≥ 0 based on the definition of
D(wr, zr;λr) and 2) note that P (w, z) = minx∈X ,y max0≤λ≤Λ f(x, y)+λ(g(x, y)− g∗(x)− δ)+
p
2∥x − w∥2 + p

2∥y − z∥2 and P (wr, zr) −D(wr, zr;λr) ≥ 0, which is true because the minimax
equality theorem [49, 50] holds whenK(x, y, w, z;λ) is strongly convex in x, y and linear (concave)
in λ.

C.2 Boundedness of Dual Variable

Lemma 11.
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Under A1-A5, suppose that the sequence {xr, yr, wr, zr, ur, λr, ∀r} is generated by SLM. As-
sume that λr ∼ O(1/

√
δ), yr ∼ O(1) are bounded. When 0 < δ < 1, choose p = Θ(λr+1),

τ = O(1), α = O(1/λr+1), ζ, β = Θ(δ1.5) such that p > L,α ≤ 1/LK , β ≤ 1, then, λr+1

will either be upper bounded by Λ for at most O(1/δ2.5) steps or there exists a constant c such
that

λr+1 ≤ cℓf√
δ
∼ O

(
1√
δ

)
, Λ >

cℓf√
δ
. (187)

In addition, when δ > 1, choose β = O(1), then, λr+1 = O(1).

Proof. From (7b), we have

yr+1 = yr − α
(
∇yf(x

r, yr) + λr+1∇yg(x
r, yr) + p(yr − zr)

)
. (188)

Applying the triangle inequality gives

∥λr+1∇yg(x
r, yr)∥ ≤ 1

α
∥yr+1 − yr∥+ ∥∇yf(x

r, yr)∥+ p∥yr − zr∥. (189)

If λr+1 < λr, then λr+1 is bounded immediately. Otherwise, note that

∥λr+1∇yg(x
r, yr)∥

(a)

≥ λr+1
√
2µg(g(xr, yr)− g(xr, y∗(xr))) (190)

= λr+1
√

2µg(g(xr, yr)− g(xr, ur) + g(xr, ur)− g(xr, y∗(xr))) (191)

(b)
= λr+1

√
2µg

τ
(λr+1 − λr) + δ + g(xr, ur)− g(xr, y∗(xr)) (192)

where (a) holds due to the PŁ condition and nonnegativity of λ, in (b) we use the rule of the dual
variable update.

Then, we can obtain

λr+1 ≤
1
α∥y

r+1 − yr∥+ ∥∇yf(x
r, yr)∥+ p∥yr − zr∥√

2µg

τ (λr+1 − λr) + δ + g(xr, ur)− g(xr, y∗(xr))
(193)

(a)

≤
1
α∥y

r+1 − yr∥+ ∥∇yf(x
r, yr)∥+ p∥yr − zr∥√

2µg

τ (λr+1 − λr) + δ
(194)

where (a) follows from the definition g∗(xr), i.e., g(xr, ur) ≥ g(xr, y∗(xr)). As λr+1 > λr, we
can further have

λr+1 ≤
1
α∥y

r+1 − yr∥+ ∥∇yf(x
r, yr)∥+ p∥yr − zr∥

√
δ

. (195)

Note that the LHS of (153) decreases on the order of (Q1 − f)/r, with the lower bound of this
quantity being ϑτ . Therefore, according to (153) and (155), we can know that the iterates will be
either in Case 1 for a certain number of iterations (i.e., at most O((Q1 − f)/(ϑτ)) steps) or in Case
2. In Case 1, the projection operation (i.e., P+[·]) can always ensure that λr+1 is bounded by Λ so
that we can choose p > L. In the following, it can be seen that the dual variable is automatically
bounded, implying that the projection of the iterates onto the upper bound will be always inactive
when the algorithm is in Case 2 (i.e., λr < Λ).

In Case 2, when 0 < δ < 1 and the following conditions are met

η, α = O
(

1

λr

)
, p = Θ(λr), β = O(δ1.5), τ = Θ(1), (196)
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and assuming that λr = O(1/
√
δ), we can have σ̄w = O(1) due to (157), ϑ = O(δ2) due to (153),

Q1 = O(1/
√
δ), and

∥yr − zr∥2 (198)
= O(∥yr+1 − yr∥2 + ∥zr+1 − zr∥2/β2)

(161)
≤ O(δ), (197a)

∥yr+1 − yr∥2
(161)
≤ O(δ2) (197b)

where we use

∥yr − yr+1 + yr+1 − zr∥ ≤ ∥yr+1 − yr∥+ 1

β
∥zr+1 − zr∥. (198)

Then, (195) can be written as

λr+1 ≤ λr+1∥yr+1 − yr∥
α0

√
δ

+
ℓf√
δ
+
p0λ

r+1∥yr − zr∥√
δ

(199)

where we choose

p = p0λ
r+1, α =

α0

λr+1
. (200)

By utilizing the step-sizes as specified in (200) and substituting (197) back to (195), it can be easily
checked that the first term of (199) is O(δ1/2λr+1/α0), and the last term is O(p0λ

r+1). From (161),

it can be seen that when ζ is small (or equivalently β0 is small, where β
(150)
= β0δ

1.5), there must exist
a constant c such that

λr+1 ≤ cℓf√
δ
∼ O

(
1√
δ

)
. (201)

When δ > 1, it is easy to check that when β, τ = O(1), p = Ω(λr+1), we have λr+1 = O(1).

Given this result and Lemma 10, we can set the tunable variable Λ as Θ(1/
√
δ). After running the

algorithm for T steps, if the last dual variable is Λ, i.e., the projection of the last iterate on Λ is
active, then, we need to increase Λ and regenerate the sequence.

C.3 Boundedness of yr, ȳ∗(wr, zr), and y∗(wr, zr;λr+1)

Lemma 12.

Under A1-A5 and the local regularity condition, suppose that the sequence
{xr, yr, wr, zr, ur, λr,∀r} is generated by SLM. Assume that yr, ȳ∗(wr, zr) are bound-
ed. Then, we have ȳ∗(wr+1, zr+1), y∗(wr, zr;λr+1), yr+1 are also bounded.

Proof. We prove these results by induction. First, we assume that yr, ȳ∗(wr, zr) are bounded, which
gives the (gradient) Lipschitz continuity of g(x, ·) at these points.

Let ∆Rr , µg(L
2
g + ℓ2g)DS/r

2, r ≥ 1. Recall the bounded set level set assumption that let

ψ(x, y) = f(x, y), x ∈ X , y ∈ {y|g(x, y)− g∗(x) ≤ δ}. (202)

Under the assumption that yr, ȳ∗(wr, zr) are bounded, we can have the descent of
the potential function up to ∆Rr that is a decreasing sequence. By the fact that
ψ(x̄∗(wr+1, zr+1), ȳ∗(wr+1, zr+1)) ≤ P (wr+1, zr+1), for any (x1, y1, w1, z1;λ1), there exists
a constant R such that

{ȳ∗(wr+1, zr+1)|P (wr+1, zr+1) ≤ Qr+1 +∆R1} ⊆ B(R(x1, y1, z1;λ1)) (203)

which gives that ȳ∗(wr+1, zr+1) is bounded.
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Applying (14) shown in Lemma 2 gives

∥y∗(xr, zr;λr+1
+ (wr, zr))− ȳ∗(wr, zr)∥

(14)
≤
√
σweak∥λr+1 − λr+1

+ (wr, zr)∥∥λ(wr, zr)− λr+1
+ (wr, zr)∥ (204)

(157)
≤ O

(√
σ̄wτ ∥g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g(x∗(wr, zr;λr+1))− δ∥

)
(205)

(a)

≤ O(
√
δ) (206)

where in (a) we choose τ = O(1) when δ > 1, so we have λ, σ̄w = O(1), and we choose
step-sizes according to (196) and also apply (158) when 0 < δ ≤ 1. So, we can have that
y∗(wr, zr;λr+1

+ (wr, zr)) ∼ O(
√
δ) is bounded. Also, it can be checked that

∥y∗(wr, zr;λr+1)− y∗(xr, zr;λr+1
+ (wr, zr))∥

(28a)
≤ p+ L

p− L
∥λr+1 − λr+1

+ (wr, zr)∥ (207)

(a)

≤ p+ L

p− L
τ∥g(x∗(vr;λr+1), y∗(vr;λr+1))− g∗(x∗(vr;λr+1))− δ)∥

(155)
≤ O(τδ) ∼ O(1) (208)

where (a) holds due to the nonexpansiveness of the nonnegative projection operator. Therefore,
y∗(wr, zr;λr+1) is bounded.

Note that K(x, ·, z;λr+1) is strongly convex with modulus p−L and gradient Lipschitz continuous
with parameter p+ L. From [51, Theorem 3.5.], we have

∥yr+1 − y∗(wr, zr;λr+1)∥ ≤
(
1− p− L

p+ L

)
∥yr − y∗(wr, zr;λr+1)∥, (209)

which directly gives the boundedness of yr+1.

D Theoretical Convergence Results

D.1 Proof of Theorem 1

Proof. KKT Conditions.

For x, y, w, z, λ, we define F as a map such that F(x, y, w, z, u, λ) = (x+, y+, w+, z+, u+, λ+),
where (x+, y+, w+, z+, u+, λ+) is the next iteration of Algorithm 1. It can be easily checked that
the map F is continuous and if x, y, w, z, u, λ is a fixed point of F , i.e., F(x, y, w, z, u, λ) =
(x, y, w, z, u, λ), then (x, y, λ) is a pair of primal-dual stationary solution of problem (1). Suppose
that

(xr, yr, wr, zr, ur, λr) → (x̄, ȳ, w̄, z̄, ū, λ̄) along a subsequence r ∈ T . (210)

Notice the lower boundedness of Qr shown in (186) and Lemma 9, we can get

∥xr+1 − xr∥ → 0, ∥yr+1 − yr∥ → 0, ∥zr+1 − zr∥ → 0 (211)

and

∥g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))−g∗(x∗(wr, zr;λr+1))−δ∥ → 0, |g(xr, ur)−g∗(xr)| → 0,

which gives ∥xr+1 − wr∥ → 0, ∥yr+1 − zr∥ → 0, ∥λr+1 − λr∥ → 0, and further implies∥∥(xr+1, yr+1, wr+1, zr+1, ur+1, λr+1
)
− (xr, yr, wr, zr, ur, λr)

∥∥→ 0. (212)
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Therefore, we obtain

∥F(x̄, ȳ, w̄, z̄, ū, λ̄)− (x̄, ȳ, w̄, z̄, ū, λ̄)∥
(a)
= lim

t→∞,t∈T
∥(xr, yr, wr, zr, ur, λr)−F (xr, yr, wr, zr, ur, λr)∥ (213)

(b)
= lim

t→∞,t∈T

∥∥(xr+1, yr+1, wr+1, zr+1, ur+1, λr+1
)
−F (xr, yr, wr, zr, ur, λr)

∥∥ (214)

= 0

where (a) holds due to the continuity of F and (b) follows from (212). Hence, (x̄, ȳ, λ̄) satisfies

stationarity :

∥∥∥∥ 1
η

(
x̄− PX (x̄− η∇xL(x̄, ȳ; λ̄))

)
∇yL(x̄, ȳ; λ̄)

∥∥∥∥ = 0, x̄ ∈ X , ∀η > 0, (215a)

feasibility : g(x̄, ȳ)− g∗(x̄)− δ ≤ 0, λ̄ ≥ 0, (215b)

complementary slackness : (g(x̄, ȳ)− g∗(x̄)− δ)λ̄ = 0, (215c)

i.e., every limit point (x̄, ȳ, λ̄) is a primal-dual stationary solution (KKT point) of problem (1).

Stationarity of Primal Variables. Recall

G(xr, yr) =
[
1
η (xr − PX (xr − η∇xL(xr, yr;λr)))

∇yL(xr, yr;λr)

]
. (216)

For the block-x, we have∥∥∥∥1η (xr − PX (xr − η∇xL(xr, yr;λr)))
∥∥∥∥

≤ 1

η

(
∥xr+1 − xr∥+ ∥xr+1 −PX (xr − η(∇xf(x

r, yr) + λr(∇xg(x
r, yr)−∇xg

∗(xr)))∥
)

(a)

≤ 1

η

(
3∥xr+1 − xr∥+ η∥∇xf(x

r, yr)−∇xf(x
r, yr+1)∥+ ηλr+1∥∇xg(x

r, yr)−∇xg(x
r, yr+1)∥

)
+ λr+1∥∇xg(x

r, ur+1))−∇xg
∗(xr)∥+ |λr+1 − λr|∥∇xg(x

r, yr)−∇xg
∗(xr)∥+ p∥xr − wr∥

≤
(
3

η
+ p

)
∥xr+1 − xr∥+ p

β
∥wr+1 − wr∥

+ (Lf + Lgλ
r+1)∥yr+1 − yr∥+ λr+1LgdS(xr)(u

r+1) + 2ℓg|λr+1 − λr| (217)
(b)

≤
(
3

η
+ p

)
∥xr+1 − xr∥+ p

β
∥wr+1 − wr∥+ (Lf + Lgλ

r+1)∥yr+1 − yr∥

+ 2ℓgτ |g(xr, yr)− g(xr, ur+1)− δ|+ λr+1LgdS(xr)(u
r+1) (218)

(c)

≤

(
3

η
+ p+

2ℓ2gτ

η(p− L)

)
∥xr+1 − xr∥+ p

β
∥wr+1 − wr∥

+

(
Lf + Lgλ

r+1 +
ℓ2gτ

α(p− L)

)
∥yr+1 − yr∥

+ 2ℓgτ |g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ|
+
(
2ℓgτ + λr+1Lg

)
dS(xr)(u

r+1) (219)

where in (a) we apply the following optimality condition of the x-subproblem

xr+1 = PX

[
xr+1−η

(
∇xf(x

r, yr+1)

+λr+1(∇xg(x
r, yr+1)−∇xg(x

r, ur+1))+ p(xr − wr) +
1

η
(xr+1 − xr)

)]
,
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(b) results from the nonexpansiveness of the nonnegative projection operator, and (c) holds due to

|g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g(xr, yr)|

≤ ℓg
p− L

(
1

α
∥yr+1 − yr∥+ 1

η
∥xr+1 − xr∥

)
, (220)

and

|g∗(x∗(wr, zr;λr+1))− g∗(xr)| ≤ ℓg
η(p− L)

∥xr+1 − xr∥. (221)

For the block-y, we have

∥∇yL(xr, yr;λr)∥
≤ ∥∇yf(x

r, yr) + λr∇yg(x
r, yr)∥ (222)

(a)

≤ 1

α
∥yr+1 − yr∥+ ℓg|λr+1 − λr|+ p∥yr − zr∥ (223)

(7c)
≤
(
1

α
+ p

)
∥yr+1 − yr∥+ ℓg|λr+1 − λr|+ p

β
∥zr+1 − zr∥ (224)

(b)

≤
(
1

α
+ p

)
∥yr+1 − yr∥+ ℓgτ |g(xr, yr)− g(xr, ur+1)− δ|+ p

β
∥zr+1 − zr∥ (225)

≤

(
1

α
+ p+

ℓ2gτ

α(p− L)

)
∥yr+1 − yr∥+

2ℓ2gτ

η(p− L)
∥xr+1 − xr∥+ p

β
∥zr+1 − zr∥

+ ℓgτ |g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ|
+ ℓgτdS(xr)(u

r+1) (226)

where in (a) we apply the following optimality condition of the y-subproblem

∇yf(x
r, yr) + λr+1∇yg(x

r, yr) + p(yr − zr) +
1

α
(yr+1 − yr) = 0, (227)

and (b) comes from the update rule of the dual variable, i.e., the second line of Algorithm 1

Therefore, the primal optimality gap can be quantified as follows:

∥G(xr, yr)∥2

≤ 5

(3

η
+ p+

2ℓ2gτ

η(p− L)

)2

+

(
2ℓ2gτ

η(p− L)

)2
 ∥xr+1 − xr∥2

+ 5

(Lf + Lgλ
r+1 +

2ℓ2gτ

α(p− L)

)2

+

(
1

α
+ p+

ℓ2gτ

α(p− L)

)2
 ∥yr+1 − yr∥2

+
5p2

β2
∥wr+1 − wr∥2 + 5p2

β2
∥zr+1 − zr∥2

+ 25ℓ2gτ
2|g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ|2

+ 5
((

2ℓgτ + λr+1Lg

)2
+ ℓ2gτ

2
)
d2S(xr)(u

r+1). (228)

From (144), we have the following three inequalities.

The first one is

min

{
1

24η
,

1

12α

}(
∥xr+1 − xr∥2 + ∥yr+1 − yr∥2

)
≤ Qr −Qr+1 +

(
µgL

2
g + 2ℓ2g

) DS

r2
. (229)

The second one is
p

12β

(
∥wr+1 − wr∥2 + ∥zr+1 − zr∥2

)
≤ Qr −Qr+1 +

(
µgL

2
g + 2ℓ2g

) DS

r2
. (230)
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The third one is
τ

189
|g(x∗(vr;λr+1)), y∗(vr;λr+1))− g∗(x∗(vr;λr+1))− δ|2

≤ Qr −Qr+1 +
(
µgL

2
g + 2ℓ2g

) DS

r2
. (231)

Then, we let

ρ1 , min

{
1

24η
,

1

12α

}
(232a)

ρ2 , max

{
5

(3

η
+ p+

2ℓ2gτ

η(p− L)

)2

+

(
2ℓ2gτ

η(p− L)

)2
 ,

5

(Lf + Lgλ
r+1 +

2ℓ2gτ

α(p− L)

)2

+

(
1

α
+ p+

ℓ2gτ

α(p− L)

)2
}. (232b)

Plugging (229), (230), and (231) into (228) along with (232a) and (232b), we can have

∥G(xr, yr)∥2 ≤
(
ρ2
ρ1

+
60p

β
+ 25 · 189ℓ2gτ

)(
Qr −Qr+1 +

(
µgL

2
g + 2ℓ2g

) DS

r2

)
+ 5

((
2ℓgτ + λr+1Lg

)2
+ ℓ2gτ

2
)
d2S(xr)(u

r+1).

Note that according to (32) we have

L2
g(λ

r+1)2 (1− 2γµg)
T r

DS ≤
L2
gDS

r2
, (233)

when T r ≥ −2 log1−2γµg
λr+1r.

Applying the telescoping sum over r = 1, . . . , T yields

1

T

T∑
r=1

∥G(xr)∥2

≤ 1

T

(
ρ2
ρ1

+
60p

β
+ 25 · 189ℓ2gτ

) T∑
r=1

(
Qr −Qr+1

)
+

1

T

(
ρ2
ρ1

+
60p

β
+ 25 · 189ℓ2gτ

)(
µgL

2
g + 2ℓ2g

) T∑
r=1

DS

r2
+
(
10 + 45ℓ2gτ

2
) T∑
r=1

DS

r2

(a)

≤ 1

T

(
ρ2
ρ1

+
60p

β
+ 25 · 189ℓ2gτ

)(
Q1 − f

)
+

1

T

((
ρ2
ρ1

+
60p

β
+ 25 · 189ℓ2gτ

)(
µgL

2
g + 2ℓ2g

)
+
(
10 + 45ℓ2gτ

2
))

DS

where (a) results from the fact
∑T

r=1 r
−2 ≤ 1 +

∫ T

1
x−2dx = 2− T−1.

We can obtain the convergence rate based on the following two cases: 1) δ > 1 and 2) δ ≤ 1.

If δ > 1, we have λr+1 = O(1). We choose

η, α = O
(

1

λr+1

)
, p = Θ(λr+1), γ, τ = O(1), ζ, β = O

(
δ

p

)
, T r = Ω(log λr+1). (234)

such that the step-sizes satisfy (143). Note that as ζ satisfies (169) and (173), it leads to ϱ = O(
√
δ)

and the strong error bound being true automatically.
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If 0 < δ ≤ 1, we choose

η, α = O
(

1

λr+1

)
, p = Θ

(
λr+1

)
, ζ, β = Θ(δ1.5), τ = O(1), T r = Ω(log λr+1), (235)

such that the step-sizes satisfy (143), (169), (173) and (177), which leads to ϱ = O(
√
δ) and the

strong error bound being true again.

Finally, it can be easily checked that when δ > 1, according to (234), we can have
1
T

∑T
r=1 ∥G(xr, yr)∥2 ≤ O(1/T ), when δ ≤ 1, we can obtain

ρ2
ρ1

= O(λr+1),
p

β
= Θ

(
λr+1

δ2.5

)
, Q1 = O(p) (236)

which gives 1
T

∑T
r=1 ∥G(xr, yr)∥2 ≤ O(1/(δ2.5T )).

Constraint Violation. Similarly, we can quantify

|g(xr, yr)− g∗(xr)− δ|2+
≤ |g(xr, yr)− g(xr, ur+1) + g(xr, ur+1)− g∗(xr)− δ|2+
(a)

≤ 2|g(xr, yr)− g(xr, ur+1)− δ|2+ + 2|g(xr, ur+1)− g∗(xr)|2+

≤ 2

τ2
∥λr+1 − λr∥2 + 2|g(xr, ur+1)− g∗(xr)|2+

where (a) holds due to g(xr, ur+1)− g∗(xr) ≥ 0.

From (144), we have

2

τ2
∥λr+1 − λr∥2 ≤ 8

τ

(
Qr −Qr+1 +

(
µgL

2
g + 2ℓ2g

) DS

r2

)
.

Applying the telescoping sum yields

1

T

T∑
r=1

|g(xr, yr)− g∗(xr)− δ|2+

(a)

≤ 8

τ

Q1 − f +
(
µgL

2
g + 2ℓ2g

)
DS

T
+

4ℓ2DS

T
(237)

where (a) results from the fact
∑T

r=1 r
−2 ≤ 1 +

∫ T

1
x−2dx = 2 − T−1. Therefore, when δ > 1,

we select step-sizes by (234), which gives 1
T

∑T
r=1 |g(xr, yr) − g∗(xr) − δ|2+ = O(1/T ); when

0 < δ ≤ 1, we choose step-sizes by (235), which gives 1
T

∑T
r=1 |g(xr, yr) − g∗(xr) − δ|2+ =

O(1/(
√
δT )).

Slackness. If λr = 0, then it is trivial that |g(xr, yr) − g∗(xr) − δ|λr is zero. So, we only need to
consider the case where λr > 0 as follows.
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Step 1. Note that

|g(xr, yr)− g∗(xr)− δ|2

≤ 3|g(xr, yr)− g(x∗(wr, zr;λr+1), y∗(xr, zr;λr+1))|2

+ 3|g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ|2

+ 3|g∗(x∗(wr, zr;λr+1))− g∗(xr)|2 (238)

≤ 6ℓ2g∥yr − y∗(wr, zr;λr+1)∥2 + 3(2ℓ2g + ℓ′2g )∥xr − x∗(wr, zr;λr+1)∥2

+ 3|g(x∗(wr, zr;λr+1), y∗(xr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ|2 (239)

≤
6ℓ2g

α2(p− L)2
∥yr+1 − yr∥2 +

3(2ℓ2g + ℓ′2g )

η2(p− L)2
∥xr+1 − xr∥2

+ 3|g(x∗(wr, zr;λr+1), y∗(xr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ|2 (240)

≤ 3

(p− L)2
max

{
2ℓ2g
α2

,
2ℓ2g + ℓ′2g

2η2

}
︸ ︷︷ ︸

,ρ3

(
∥xr+1 − xr∥2 + ∥yr+1 − yr∥2

)

+ 3|g(x∗(wr, zr;λr+1), y∗(wr, zr;λr+1))− g∗(x∗(wr, zr;λr+1))− δ|2. (241)

Step 2. Then, we can get

1

T

T∑
r=1

∥g(xr+1, yr+1)− g∗(xr+1)− δ∥2∥λr+1∥2

≤ 1

T

T∑
r=1

ρ3
(
∥xr+2 − xr+1∥2 + ∥yr+2 − yr+1∥2

)
∥λr+1∥2

+ 3|g(x∗(vr+1;λr+2), y∗(vr+1;λr+2))−g∗(x∗(vr+1;λr+2))−δ|2∥λr+1∥2 (242)

≤
(
ρ3
ρ1

+
3 · 189
τ

)
max{∥λr+1∥2}

Q1 − f +
(
µgL

2
g + 2ℓ2g

)
DS

T

where (a) holds as when δ > 1 we have λr+1 = O(1), which gives ∥g(xr+1, yr+1) − g∗(xr+1)−
δ∥2∥λr+1∥2 = O(1/T ); when δ ≤ 1, we have ρ3/ρ1 = O(1/λr+1), ∥λr+1∥2/τ ≤ O(1/δ), so we
can obtain ∥g(xr+1, yr+1)− g∗(xr+1)− δ∥2∥λr+1∥2 = O(1/(δ3/2T )).
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E Additional Numerical Results
In this section, we present additional numerical results obtained from the Fashion MNIST data set
and compare the performance of SLM with other algorithms, such as BOME [15], V-PBGD [16],
BVFSM [52], and ITD[13].
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Figure 4: Convergence performance of SLM, BOME [15], and V-PBGD [16] on the neural network with the
fashion MNIST data set.
E.1 Fashion MNIST Data Set
We also evaluate the performance of these algorithms using the fashion MNIST dataset. The neural
network architecture employed is the same as in the previous case. For all the compared algorithms,
we set the step-sizes of the block-x and block-y updates to 0.1. The step-size γ for the auxiliary
block-u update is set to 0.01. Figure 4 illustrates that SLM with δ = 1 consistently outperforms
the other algorithms in this example. This suggests that allowing for a certain tolerance level for the
LL objective can enhance generalization performance. The convergence rates of all the algorithms
are similar. However, it is important to note that both BOME and V-PBGD fail to achieve the
optimal solution at the LL level since there exists a discrepancy of cerror = 0.78 for V-PBGD and
cerror = 0.42 for BOME. Consequently, none of the methods can find the KKT points of problem
(2) in this particular case. Nonetheless, SLM can attain the KKT solution of problem (1) with cerror
values below 1 and 0.5 respectively. This further underscores the advantages of utilizing this class
of structured constrained problems compared to the BO formulation.

E.2 Comparison with BVFSM and ITD w.r.t. Runtime
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Figure 5: Convergence performance (test accura-
cy) of BOME, SLM, V-PBGD, ITD, and BVFSM.

In addition, we conduct a numerical perfor-
mance evaluation of our problem formulation
and SLM algorithm on a different data hyper-
cleaning task described in [15]. In this par-
ticular setup, a clipping function is applied at
the lower level, and the training data consist-
s of 50, 000 samples. We compare the per-
formance of SLM with two other baseline al-
gorithms: the bi-level value-function-based se-
quential minimization (BVFSM) algorithm in-
troduced in [52], and the iterative differentia-
tion (ITD) based bilevel optimizer as described
in [13].

The results of these experiments are presented
in Figure 5. It is important to note that in this presentation, we plot test accuracy against runtime
to ensure a fair comparison. The outcomes of the evaluation demonstrate that SLM achieves higher
test accuracy compared to these existing benchmarks. Furthermore, the convergence speed of SLM
closely aligns with that of V-PBGD and BVFSM.

F Ethical Considerations
This work primarily focuses on the design of optimization algorithms and the theoretical analysis of
convergence. It does not involve any negative societal or ethical issues.
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