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Abstract

Robotic applications often involve working in environments that are uncertain,
dynamic, and partially observable. Recently, diffusion models have been proposed
for learning trajectory prediction models trained from expert demonstrations, which
can be used for planning in robot tasks. Such models have demonstrated a strong
ability to overcome challenges such as multi-modal action distributions, high-
dimensional output spaces, and training instability. It is crucial to quantify the
uncertainty of these dynamics models when using them for planning. In this
paper, we quantify the uncertainty of diffusion dynamics models using Conformal
Prediction (CP). Given a finite number of exchangeable expert trajectory examples
(called the “calibration set”), we use CP to obtain a set in the trajectory space (called
the “coverage region”) that is guaranteed to contain the output of the diffusion
model with a user-defined probability (called the “coverage level”). In PlanCP,
inspired by concepts from conformal prediction, we modify the loss function
for training the diffusion model to include a quantile term to encourage more
robust performance across the variety of training examples. At test time, we then
calibrate PlanCP with a conformal prediction process to obtain coverage sets for
the trajectory prediction with guaranteed coverage level. We evaluate our algorithm
on various planning tasks and model-based offline reinforcement learning tasks
and show that it reduces the uncertainty of the learned trajectory prediction model.
As a by-product, our algorithm PlanCP outperforms prior algorithms on existing
offline RL benchmarks and challenging continuous planning tasks. Our method can
be combined with most model-based planning approaches to produce uncertainty
estimates of the closed-loop system.

1 Introduction

Uncertainty is a major challenge in robotics, arising from a variety of sources, including errors
in modeling, sensing, planning, and control [1, 2, 3]. Understanding the effect of uncertainty is
important for developing successful motion strategies, as it allows robots to anticipate and plan
for unexpected events. Therefore, planning with uncertainty is a crucial challenge in robotics and
accurately modeling this uncertainty is important for ensuring the safety and reliability of robotic
systems, particularly in safety-critical applications. A range of techniques, such as probabilistic
modeling [4] and robust optimization [5, 6], can be used to account for the uncertainty of dynamics
models in robotics.
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The dynamics model is especially critical for model-based planning [7] and reinforcement learning
(MBRL) [8]. Due to the advantages such as expressing multi-modal action distributions, high-
dimensional output space, and stable training, there has been a growing trend in learning-based
planning approaches to utilizing diffusion models as dynamics models [9, 10]. Diffusion models
can also address the challenge of multi-modal distribution of actions in planning, which arises when
multiple actions may be appropriate for a given state. This is achieved by enabling policies to
express a distribution over multiple actions rather than a deterministic choice of a single action [11].
Furthermore, diffusion models hold the potential to be applied to Offline Reinforcement Learning,
which aims to learn effective strategies using offline datasets without exploration [12]. However,
existing model-based algorithms struggle when encountering out-of-distribution (OOD) actions or
states [9]. A crucial element absent from these methods is the adequate management of uncertainty in
the offline scenario [13, 14]. Uncertainty-aware dynamics models that convey algorithmic confidence
are valuable if they possess accurate calibration and sharpness [15]. Calibration entails aligning
predicted probabilities with actual outcomes, whereas sharpness refers to the concentration of
predicted probabilities around the true probability [16]. Nevertheless, many machine learning
algorithms generate poorly calibrated probability estimates, which can result in overconfident or
underconfident predictions and lead to suboptimal decision-making [17, 18]. Therefore, to ensure
accuracy and optimal decision-making, it is crucial to utilize uncertainty-aware models that are
well-calibrated and sharp.

Conformal Prediction (CP) [19] is a potent approach to assessing the uncertainty associated with
predictions generated by black-box models. CP offers several advantages over traditional methods
for measuring uncertainty. For example, CP is model-agnostic [20], meaning it can be applied to any
type of model without requiring knowledge of the model’s inner mechanisms. This is particularly
advantageous in cases where the underlying model is complex and not well understood. Additionally,
CP allows for customization of the desired confidence level, providing the ability to control the
trade-off between predictive accuracy and the level of uncertainty [21]. This feature is especially
important in safety-critical applications where a higher level of confidence is required. Furthermore,
CP can be used for online learning [22], meaning that it can adapt to new data points as they become
available. This makes it a particularly useful approach for planning in dynamic environments. Lastly,
CP is distribution-free [23], providing statistical guarantees [24] and reliable uncertainty estimates
from finite samples [25]. Given these advantages, we choose to use CP as our method of uncertainty
quantification for diffusion dynamics models in planning. The flexibility and reliability of CP provide
a rigorous and mathematically proven framework for uncertainty quantification, which is critical for
ensuring the safety and reliability of robotic systems in a variety of applications.

In this paper, we connect conformal prediction to planning and propose PlanCP, adopting a practical
and effective conformal prediction uncertainty estimation method for planning algorithms. Empiri-
cally, we observe that PlanCP substantially improves model stability. In addition, PlanCP reduces
uncertainty without sacrificing performance on datasets with demonstrations collected from experts.
PlanCP can be applied to reinforcement learning or imitation learning from demonstrations [26, 27]
as well. However, since we build on the Diffuser [9], which calls itself a planning method, we will
generally stick with the planning terminology for consistency with the literature.

In summary, our main contributions are as follows:

• We introduce PlanCP, a framework that enables the use of a conformal prediction to estimate
uncertainty in planning tasks, without sacrificing the accuracy of dynamics models.

• Our approach is compatible with diffusion dynamics models. We demonstrate that by
employing a diffusion model as the foundational dynamics model, we can construct a
conformal predictor that guarantees trustworthy and accurate uncertainty estimates.

• We extensively evaluate our approach, and the experimental results demonstrate that it
exhibits lower uncertainty without compromising performance across multiple benchmarks,
including Offline Reinforcement Learning.

2 Related Work

2.1 Conformal Prediction

Conformal Prediction (CP) [19, 28, 29, 30, 21, 24, 31, 32, 33] is effective for measuring the un-
certainty associated with predictions produced by black-box models. As a variant of conformal
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prediction, Transductive Conformal Predictor (TCP) can be applied on top of existing machine
learning methods to establish valid prediction regions, [19]. TCP takes into account the structure of
the data being predicted and uses the entire dataset during the prediction phase to construct prediction
regions around each data point [34]. To improve the computational efficiency of the initial transduc-
tive approach, a more computationally efficient framework Inductive Conformal Predictor (ICP) was
proposed, which involves dividing the training data into a proper training set and a calibration set [35].
However, ICP can be informationally inefficient as some examples are used solely for modeling while
others are used only for calibration. To address this, ensembles of conformal predictors have been
proposed [36, 37] and [38]. Examples include Cross Conformal Predictor (CCP) [39], Bootstrap
Conformal Predictor (BCP) [19] and the generalized Aggregated Conformal Predictor (ACP) [40]. In
a recent study [41], conformal prediction was used to construct prediction regions for recurrent neural
networks (RNNs). Strawn et al. [42] propose conformal predictive safety filters that use statistical
techniques to provide uncertainty intervals around predictions and learn an additional safety filter that
closely follows the RL controller but avoids uncertainty intervals. Tonkens et al. [43] expand upon
prior work in planning with probabilistic safety guarantees using conformal prediction. Conceptually
closest to our work are [44, 45, 42, 43]. However, in these works, only quantification of uncertainty
is provided, and reduction of the uncertainty during training is absent. In comparison, we are able to
reduce uncertainty in training and extend conformal prediction to diffusion models.

2.2 Diffusion Models

In recent years, diffusion models have gained significant attention as a powerful class of generative
models that formulates the data-generating process as a sequence of denoising steps [46, 47, 48, 11].
Inspired by score matching [49] and energy-based models (EBMs) [50, 51, 52, 53], diffusion models
rely on a denoising procedure, which can be viewed as a way of parameterizing the gradients of the
data distribution [54]. From the model-based trajectory-planning perspective, Diffuser [9] applies
a diffusion model as a trajectory generator. From the model-free policy-optimization perspective,
Wang et al. [11] utilize a diffusion model to represent the policy, applying it to the action space and
conditioning it on the states to form a conditional diffusion model. Diffusion Policy [10] utilizes a
conditional diffusion-based process to model policies for real robots, exhibiting robust handling of
multi-modal action distributions. However, the aforementioned approaches lack the capability to
quantify the associated uncertainty, which is precisely the focus of our paper.

2.3 Planning, Predictive Dynamics Model, and Model-Based Reinforcement Learning

Model-based reinforcement learning (MBRL) has emerged as a promising solution for real-world
sequential decision-making problems with distinct advantages such as analytic gradient computa-
tion [55]. A significant body of literature focuses on learning a dynamics model and utilizing the
learned model for policy learning through model-based planning [56, 57, 58, 59]. PILCO [60] utilizes
a Gaussian process to model system dynamics, while World Models [61] and Dreamer [62] learn
latent dynamics through two-stage and online planning, respectively. MGAIL [63] introduces a
forward model in GAIL, but its discriminators output a uniform representation that is less transfer-
able. PETS [64] combines probabilistic neural networks and deterministic neural networks to create
uncertainty-aware models. To capture long-term dependencies, FNNs, RNNs, and Transformers have
been used to develop internal models [65, 66, 67]. Our study distinguishes itself from prior research
by investigating techniques to measure and minimize uncertainty using conformal prediction for
diffusion-based dynamics models.

3 Method

In this section, we describe our framework PlanCP (as Fig. 1 shows) to solve the problem of
uncertainty-aware planning. We begin by outlining our overall methodology, which involves three
key steps. First, we introduce the diffusion-based dynamics model to predict future trajectories.
Second, we apply the conformal prediction technique on the dynamics model to quantify and reduce
the uncertainty. Finally, we summarize the whole procedure of our algorithm. In the following
subsections, we provide more details on each of these steps and explain the specific techniques we
used to implement them. As for notation, we use superscript n to denote diffusion timestep, i or k to
denote different trajectories, and t to denote trajectory timestep.
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Figure 1: PlanCP Framework: To update the dynamics model during training, we perform
uncertainty-aware optimization using the training set Dtrain. During calibration, we construct
the uncertainty interval q̂ based on Dcal, and then we verify the uncertainty interval using the test set
Dtest.

3.1 Background

We consider a Markov Decision Process (MDP) represented by the tuple (S,A, T , r, ρ0, γ) with
state space S , action-space A, dynamics T (s′|a, s), reward function r(s,a), initial state distribution
ρ0(s), and discount factor γ ∈ (0, 1). We assume a stochastic policy π that maps a state to a
distribution over actions. We define τ as trajectories, which consist of sequences of state-action
pairs (s0,a0, · · · , sT ,aT ) generated by a policy π. τE are expert trajectories generated by an expert
policy πE . T represents the time horizon. We use a two-dimensional array to represent the trajectory
τ :

τ =

[
s0 s1 . . . sT
a0 a1 . . . aT

]
, (1)

with each column corresponding to a timestep in the planning horizon.

3.1.1 Planning with Conditional Diffusion Probabilistic Models

In Bayesian inference, it is intractable to compute the exact posterior distribution due to the high
dimensionality and the complexity of the model. One type of latent variable model approximates
posterior by the forward or diffusion process q(τn|τn−1), which is modeled as a fixed Markov chain
that progressively adds Gaussian noise to the data. Diffusion Probabilistic Models, as described
in [46, 47], characterize the process of data generation as an iterative denoising procedure, formalized
as the probability distribution pθ(τ

n−1|τn). The denoising operation (as Eq. 2 shows) is performed
in reverse of a forward process q(τn|τn−1), which progressively introduces noise and alters the
underlying structure of the data.

pθ(τ
0) =

∫
p(τN )

N∏
n=1

pθ(τ
n−1|τn)dτ1:N , (2)

where p(τN ) = N (τN ;0, I) is a standard Gaussian prior and τ 0 ∼ q(τ 0) is noiseless problem data.
The reverse process is parameterized as Gaussian (Eq. 3):

pθ(τ
n−1|τn) = N (τn−1;µθ(τ

n, n),Σn), (3)

in which µθ and Σ are the mean and covariance of the Gaussian distribution respectively. Janner et
al. [9] proposed a way to turn diffusion models into planners that can incorporate different conditions.
To achieve this, a learned/expert-designed condition function w(·) is added to the diffusion model,
which yields a planner Pθ described by Eq. 4:

Pθ(τ ) ∝ pθ(τ )w(·). (4)

where pθ(τ ) is the diffusion model’s probability distribution, and w(·) is a conditional function that
can include information such as observations history, desired goals, or rewards. Practically, this can
be implemented by sampling from the unperturbed reverse process and replacing the sampled values
with conditioning values w(·) at all diffusion timesteps. We can use a learned reward function as a
condition, as introduced in Sec. 3.2.
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Algorithm 1: PlanCP: Conformal Prediction for Planning with Diffusion Dynamics Models
Data: Training set Dtrain with Ktrain samples, calibration set Dcal with Kcal samples, test set

Dtest with Ktest samples, planner Pθ, expert trajectory τE , and failure probability α.
Result: predicted trajectory τ , uncertainty C.

1 while not converged do
2 for i = 0, 1, 2, · · · ,Ktrain − 1 do
3 Get predicted trajectory τi corresponding to expert trajectory τE

i ∈ Dtrain;
4 Compute reconstruction nonconformity score as Eq. 6 for each τE

i ∈ Dtrain;
5 Construct uncertainty Ci as Eq. 9;
6 Compute total loss Lplan as Eq. 13 and Lreward as Eq. 14;
7 Update the dynamics model Pθ using loss Lplan and the reward model R(·) using loss

Lreward;
8 end
9 end

10 for i = 0, 1, 2, · · · ,Kcal − 1 do
11 Get predicted trajectory τi as Dcal;
12 Compute reward conformity score ri for each τi ∈ Dcal;
13 Construct predicted interval q̂ as Eq. 15;
14 end
15 Verify the predicted interval using the test set Dtest;

3.2 Learned Reward Function

Learning a reward model is important because it allows an intelligent agent to estimate the expected
rewards of a given action and state, which is useful for the agent to make informed decisions in an
environment. Additionally, using a learned reward model can enable us to adapt to changes in the
environment and adjust our predictions accordingly. However, learning an accurate reward model
from data is challenging. Thus, we introduce a transformer-based reward model as Eq. 5, which can
perform accurate long-term temporal predictions.

r̂0:T = R(MultiHead(Q = s0:T ,K = s0:T , V = a0:T )),

MultiHead(Q,K, V ) = Concat(head1, head2, ..., headh)WO,

headj = Attention(QWQ
j ,KWK

j , V WV
j ),

Attention(Q,K, V ) = softmax

(
QKT√

df

)
V,

(5)

where R(·) is an MLP layer to map the multi-head attention feature to a predicted reward. df is
the dimension of the attention feature. For more details of transformer architecture, please refer
to [68]. The transformer-based reward model is used as a condition for diffusion models to generate
reasonable trajectories.

3.3 Quantifying Uncertainty with Conformal Prediction

The inherent uncertainty in the diffusion-based dynamics model Pθ can lead to inaccurate predictions.
To address these challenges, we employ the conformal prediction technique to obtain prediction
uncertainty. Unlike other approaches [4], conformal prediction does not rely on assumptions about the
underlying distribution or the predictive model, making it a flexible and robust method for uncertainty
quantification in machine learning [24]. This allows us to quantify the uncertainty associated with
the predictions and provides more robust estimates of the model’s performance.

We have split the dataset D into three parts — Dtrain, Dcal, and Dtest — for training, calibration,
and testing, respectively. The planner Pθ and reward function R(·) are learned from the Dtrain

dataset.

In our problem setting, we use reconstruction nonconformity scores during training and reward
conformity scores during calibration and testing. Reconstruction nonconformity scores is defined as
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Diffuser PlanCP

(a) Maze2D U-Maze

Diffuser (Failed) PlanCP

(b) Maze2D Medium

Diffuser PlanCP

(c) Maze2D Large

Figure 2: Learned long-horizon planning: By learning the planning procedure, PlanCP is capable
of conducting long-horizon planning with a specified start and goal condition. even under
conditions of sparse rewards. Sub-environment visualization for Maze2D: (a) U-Maze, (b) Medium,
(c) Large. We have marked the risky region in the baseline with purple dashed boxes.

the mean squared error of the learned trajectories from the expert trajectories. Reward conformity
scores are exactly the reward returned by the environment for a given trajectory.

Training To be able to compute and reduce the uncertainty during training, we need to perform
conformal prediction on the training set Dtrain. First, we compute the reconstruction nonconformity
score as Eq. 6 for each trajectory τi of the training set Dtrain. A lower reconstruction nonconformity
score corresponds to better predictions.

r̃i = ||τi − τE
i ||2, (6)

where τi is the predicted ith trajectory while τE
i is the ground-truth ith trajectory from the expert

demonstration of Dtrain.

Calibration and Testing During calibration and testing, we use reward conformity score to quantify
the uncertainty. Let r0, r1, · · · , rk be k + 1 rewards corresponding to τ0, τ1, · · · , τk trajectories
predicted by our planner Pθ. These rewards are defined and returned by the environments, which can
be regarded as independent and identically distributed random variables. For planning, the reward
conformity score can be seen as a metric that reflects the planner’s ability to predict the quality of
plans. A higher reward conformity score corresponds to better predictions, indicating that the planner
is more accurate in its estimations. Our objective is to quantify the uncertainty associated with the
reward ri based on a set of reference rewards {r0, · · · , rk} \ ri. Specifically, we aim to construct a
prediction interval Ci that contains ri with probability at least 1− α ∈ (0, 1). Formally, we seek to
find a valid prediction interval Ci that satisfies the following inequality:

P(ri ∈ Ci({r0, · · · , rk} \ ri)) ≥ 1− α, (7)

where Ci({r0, · · · , rk} \ ri) denotes the prediction interval constructed using the reference rewards
{r0, · · · , rk} \ ri. The prediction interval Ci should provide a measure of the uncertainty associated
with the reward ri, and it should be constructed in such a way as to guarantee that with a probability
of at least 1− α, it contains ri.

Lemma 3.1. Given k + 1 exchangable random trajectories (τE
0 , τE

1 , · · · , τE
k ) ∼ Dtrain, predicted

trajectory (τ0, τ1, · · · , τk), corresponding (non)conformity scores d0, d1, . . . , dk, and a failure
probability α ∈ (0, 1), then

P[di ≤ Ci] ≥ 1− α, (8)

where the prediction interval Ci are defined by

Ci = Quantile
(
d0, . . . , di−1, di+1, . . . , dk;

⌈(k + 1)(1− α)⌉
k

)
. (9)

During training, we use reconstruction nonconformity score as di, while during calibration and
testing, we use the reward conformity score as di. Note that if α is less than 1/k, our confidence
intervals become infinitely wide as we have insufficient data to make predictions with that accuracy.
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Table 1: Long-horizon planning in Maze2D. Maze2D features a sparse reward structure and requires
long-horizon planning. PlanCP has lower uncertainty and better performance. Bold font means better
performance.

Environment BCQ [70] CQL [71] IQL [72] Diffuser [9] PlanCP

Maze2D U-Maze 12.8 5.7 47.4 113.9 ± 3.1 116.4 ± 3.2
Maze2D Medium 8.3 5.0 34.9 121.5 ± 2.7 128.5 ± 2.5

Maze2D Large 6.2 12.5 58.6 123.0 ± 6.4 130.9 ± 5.6
Average 9.1 7.7 47.0 119.5 125.3

3.4 Trajectory Optimization on Uncertainty-aware Planning

Trajectory optimization for a discrete-time dynamics system defined by st+1 = f(st,at) involves
identifying a sequence of actions a0:T that maximizes an objective function J , which is the sum of
per time-step rewards or costs c(st,at). The optimization problem can be represented as follows:

a0:T = argmin
a0:T

J (s0,a0:T ) = argmin
a0:T

T∑
t=0

γtc(st,at). (10)

Here, T represents the planning horizon.

While training, we utilize the uncertainty calculated from {r̃i} as a cost function to optimize the
parameters of the planner model. After computing the reconstruction nonconformity scores on our
dataset and setting Ĉ = Quantile

(
r̃1, . . . , r̃k;

⌈(k+1)(1−α)⌉
k

)
, we can form the uncertainty loss:

L(θ)uncertainty = Ĉ. (11)

After adopting the differentiable ranking and sorting techniques [69], the soft quantile function is
differentiable. On the other hand, a diffusion probabilistic model is used to parameterize the learned
gradient ϵθ(τn, n) of the trajectory denoising process. The objective for training the ϵ model can be
expressed as Eq. 12:

L(θ)recon = En,ϵ,τ0 [∥ϵ− ϵθ(τ
n, n)∥2], (12)

where n ∼ U{1, 2, . . . , N} represents the diffusion timestep. ϵ ∼ N (0, I) represents the noise target.
Finally, τn denotes the trajectory τ 0 that is corrupted with noise ϵ.

In the context of learning, we hope to use conformal prediction to construct prediction intervals
for expected cumulative rewards, which can be used to estimate the uncertainty of the predictions.
By incorporating these prediction intervals into the decision-making process, we can make more
informed decisions and avoid overly optimistic or pessimistic estimations. Finally, the learning
objective for planner training is

Lplan = L(θ)recon + λuncertaintyL(θ)uncertainty. (13)

Given predicted reward r̂ and ground-truth reward r, the learning objective for reward model training
is

Lreward = ∥r̂ − r∥2. (14)
The reward model R(·) is used as the condition for the diffusion model as Eq. 4 shows. We can obtain
reward r returned by the environment or learned reward model. On the calibration dataset Dcal, we
compute the reward conformity scores and set Qα

i , Q
1−α
i and prediction interval q̂ using conformal

prediction as Eq. 15.

Qα(rk+1) = Quantile
(
r1, . . . , rk;

⌈(k + 1)(1− α)⌉
k

)
,

Q1−α(rk+1) = Quantile
(
r1, . . . , rk;

⌈(k + 1)α⌉
k

)
,

q̂(rk+1) = [Q1−α(rk+1), Q
α(rk+1)].

(15)

Once the prediction interval is constructed, we assess its performance on the test set Dtest.
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Table 2: Uncertainty. The uncertainty quantification of PlanCP and prior algorithms in the Maze2D
environment. PlanCP has lower uncertainty than previous methods for most tasks. Bold font means
better performance.

Diffuser [9] PlanCP
Dataset Rewards ↑ Uncertainty ↓ Interval q̂ ↓ Rewards ↑ Uncertainty ↓ Interval q̂ ↓

Maze2D U-Maze 113.9 ± 3.1 [121.83, 147.19] 25.36 116.4 ± 3.2 [121.11, 142.85] 21.74
Maze2D Medium 121.5 ± 2.7 [132.77, 141.85] 9.08 128.5 ± 2.5 [132.77, 142.99] 10.22

Maze2D Large 123.0 ± 6.4 [92.11, 163.23] 71.12 130.9 ± 5.6 [97.75, 168.46] 70.71
Average 119.5 125.3

3.5 Our Proposed Procedures

We first iterate over the training set Dtrain and for each expert trajectory τE
i , obtain a predicted tra-

jectory τi using the learned dynamics model Pθ. Then we compute the reconstruction nonconformity
score r̃ for each τE

i and construct the uncertainty Ci. The loss Lplan and Lreward are then computed
using Eq.13 and Eq.14, respectively. Finally, the dynamics model Pθ and reward model R(·) are
updated using the computed loss.

Next, we iterate over the calibration set Dcal, and for each predicted trajectory τi, obtain the reward
conformity score ri and construct the predicted interval q̂i.

Finally, we verify the predicted interval using the test set Dtest to evaluate its performance. The
whole procedure is shown in Alg. 1.

4 Experiments

In our experiments, we aim to answer the following questions: (1) How to construct uncertainty
intervals that can capture the dynamics model’s prediction error and provide a measure of confidence
in the planned trajectories? (2) Can the uncertainty of the dynamics model be reduced during the
training process? To answer these questions, we evaluate PlanCP on multiple planning and offline
RL tasks. We show planning with our algorithm can update the dynamics model while quantifying
uncertainty. In principle, our approach can be applied to a wide range of diffusion dynamics models.
For illustrative purposes, we demonstrate our framework using a typical Diffuser [9]. Our primary
objective is to assess and minimize the model’s uncertainty, while performance improvement is a
by-product of our approach and is not necessarily guaranteed. We assess the performance of our
models based on several quantitative metrics, including credibility and rewards.

4.1 Training setup

We set the uncertainty weight to λuncertainty = 5 and the failure probability to α = 0.1. To optimize
the model, we use the Adam [73, 74] optimizer with a learning rate of 2 × 10−4. We train the
diffusion dynamics model on the training set Dtrain for 2× 105 iterations. As we lack ground-truth
for evaluation, we generate the evaluation datasets Dcal and Dtest during the evaluation process. We
partition the evaluation data into 20% for Dcal and 80% for Dtest. The uncertainty measure q̂ is
derived from the 20% calibration set through conformal prediction.

4.2 Long Horizon Task Planning

We use Maze2D to evaluate long-horizon planning. q̂ is a measure of uncertainty for the rewards
obtained by a planned trajectory. For most variants of the Maze2D environment, we have a smaller
uncertainty interval, especially for Maze2D U-Maze, as Tab. 1 and Tab. 2 show. As Fig. 2 shows,
Compared to Diffuser, our PlanCP has successfully generated a smoother path with lower uncertainty,
which achieves a higher reward. Furthermore, in cases where the previous Diffuser method fails to
plan, our PlanCP is able to derive a feasible path.
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Table 3: Uncertainty of Offline Reinforcement Learning. The uncertainty quantification of PlanCP
and Diffuser [9] in the D4RL environment. PlanCP has lower uncertainty than Diffuser [9] for most
tasks. Bold font means better performance.

Diffuser [9] PlanCP
Dataset Environment Rewards ↑ Uncertainty ↓ Interval q̂ ↓ Rewards ↑ Uncertainty ↓ Interval q̂ ↓

Medium-Expert HalfCheetah 85.82 ± 6.91 [82.20, 91.55] 9.34 87.44± 6.51 [83.12, 91.81] 8.68
Medium-Expert Walker2d 108.22 ± 8.52 [108.48, 109.58] 1.10 108.31± 8.07 [107.86, 110.43] 2.56

Medium HalfCheetah 46.10 ± 0.96 [45,05, 47.34] 2.29 46.26 ± 1.35 [44.64, 47.97] 3.33
Medium Walker2d 75.73 ± 19.59 [40.76, 87.72] 46.96 77.08± 18.21 [44.51, 88.46] 43.95

Medium-Replay HalfCheetah 37.34 ± 6.57 [27.92, 41.58] 13.66 37.65± 6.29 [29.25, 42.23] 12.98
Medium-Replay Walker2d 52.24 ± 24.44 [21.18, 87.83] 66.65 54.53± 23.00 [25.41, 87.78] 62.37

Average 67.58 68.55

4.3 Offline Reinforcement Learning

Finally, we evaluate the ability to recover an effective single-task controller from heterogeneous
data of varying quality using the D4RL Benchmark [75]. The D4RL benchmark consists of several
challenging continuous control tasks, such as the HalfCheetah and Ant environments. For each task,
we measured the average return achieved by our approach and the baseline methods over multiple
runs. We also computed the standard deviation of the returns to measure the stability of the algorithms.
Our experimental results demonstrate that our approach outperforms the baseline methods on most of
the D4RL environments, as Tab. 3 shows. For most of the environments, our approach achieved a
higher return with a smaller uncertainty interval compared to the baseline methods. We also observed
that our approach achieved a more stable performance across multiple runs, as evidenced by the
smaller standard deviation of the returns.

Overall, experimental results show that our framework can construct uncertainty intervals that can
capture the dynamics model’s prediction error and provide a measure of confidence in the planned
trajectories.

5 Discussion, Limitations, and Conclusions

In this work, we tackled the problem of obtaining uncertainty estimates for planning and offline RL
tasks by proposing a new approach that applies conformal prediction to a diffusion-based dynamics
model. Experimental results show that our framework maintains the original model’s accuracy while
reducing uncertainty. One limitation of our study is that we have not conducted evaluations on
real robotic platforms. An intriguing avenue for future research involves gaining a comprehensive
understanding and conducting a meticulous analysis of how conformal prediction compares to the
extensive body of research in planning under uncertainty, including non-parametric models. Our
work focuses primarily on proposing an algorithmic framework. Future work could also explore
the use of more recent and effective diffusion models, as well as other types of dynamics models.
Moreover, evaluating the proposed method on real-world applications, such as autonomous driving
or robotics, where reliable uncertainty estimates are crucial for safety-critical systems, would be an
interesting avenue for future research.
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A Appendix

A.1 Implementation Details

A.1.1 Transformer-based Reward Model

We adopt the Transformer architecture [68] as our reward model, which consists of 4 self-attention
layers and 4 attention heads. The hidden dimension for features, denoted as df , is set to Ls + La.
The dimension of st is denoted as Ls, and the dimension of at is denoted as La. The input size of
the transformer is Ls + La, and the output size is also Ls + La. The specific values of Ls and La

depend on the environment (See Tab. 4). During training, all models are optimized using the Adam
optimizer [73] with an initial learning rate of 0.0002. We train our model for 200 epochs with a batch
size of 256, utilizing a single GTX 1080 Ti GPU for computation.

A.1.2 Diffusion Models

The architecture of PlanCP is similar to that of Diffuser, featuring a U-Net structure with 6 re-
peated residual blocks. Each block consists of two temporal convolutions, followed by group
normalization [76] and a Mish nonlinearity [77]. Timestep embeddings are generated using a single
fully-connected layer and added to the activations of the first temporal convolution within each block.
For optimization, we employ the Adam optimizer [73, 74] with a learning rate of 0.0002 and a batch
size of 32. The models are trained for 500k steps. The planning horizon, denoted as T , is set to 32
for all locomotion tasks, 128 for Maze2D U-Maze, 265 for Maze2D Medium, and 384 for Maze2D
Large. The number of diffusion steps, denoted as N , is 20. The guide scale is set to 0.1 for most
tasks, except for hopper-medium-expert, which uses a smaller scale of 0.0001. Additionally, the
discount factor γ is set to 0.997.

Environment Ls La

Maze2D 4 2
D4RL-Hopper-v2 11 3
D4RL-Walker-v2 17 6

D4RL-HalfCheetah-v2 17 6
Table 4: Ls and La for each environements

(a) Maze2D U-Maze (b) Maze2D Medium (c) Maze2D Large

Figure 3: Maze2D: In the Maze2D environment, the agent operates in a two-dimensional grid
world consisting of walls, obstacles, and target locations. The objective of the agent is to navigate
starting from through the maze and reach the designated target location while avoiding obstacles
and walls, even under conditions of sparse rewards. The Maze2D environment offers various sub-
environments, each representing different levels of difficulty. Sub-environment visualization for
Maze2D: (a) U-Maze, (b) Medium, (c) Large.
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(a) HalfCheetah-v2 (b) Hopper-v2 (c) Walker2d-v2

Figure 4: Environment visualization for D4RL: (a) HalfCheetah-v2, (b) Hopper-v2, (c) Walker2d-v2.

A.2 Benchmarks and Datasets

We experiment with benchmarks and expert demonstrations: Maze2D (see Fig. 3) and D4RL (see
Fig. 4). Maze2D is a two-dimensional maze navigation task that is suitable for evaluating long-horizon
planning. D4RL is a collection of continuous control tasks from the Deep Reinforcement Learning
Benchmark Suite [75]. In each of these benchmarks, we have access to expert demonstrations that
serve as training data Dtrain for our dynamics model.
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