
Decision Stacks: Flexible Reinforcement Learning
via Modular Generative Models

Siyan Zhao
Department of Computer Science

University of California Los Angeles
siyanz@cs.ucla.edu

Aditya Grover
Department of Computer Science

University of California Los Angeles
adityag@cs.ucla.edu

Abstract

Reinforcement learning presents an attractive paradigm to reason about several
distinct aspects of sequential decision making, such as specifying complex goals,
planning future observations and actions, and critiquing their utilities. However, the
combined integration of these capabilities poses competing algorithmic challenges
in retaining maximal expressivity while allowing for flexibility in modeling choices
for efficient learning and inference. We present Decision Stacks, a generative
framework that decomposes goal-conditioned policy agents into 3 generative mod-
ules. These modules simulate the temporal evolution of observations, rewards, and
actions via independent generative models that can be learned in parallel via teacher
forcing. Our framework guarantees both expressivity and flexibility in designing
individual modules to account for key factors such as architectural bias, optimiza-
tion objective and dynamics, transferrability across domains, and inference speed.
Our empirical results demonstrate the effectiveness of Decision Stacks for offline
policy optimization for several MDP and POMDP environments, outperforming
existing methods and enabling flexible generative decision making.1

1 Introduction

Modularity is a critical design principle for both software systems and artificial intelligence (AI). It
allows for the creation of flexible and maintainable systems by breaking them down into smaller, inde-
pendent components that can be easily composed and adapted to different contexts. For modern deep
learning systems, modules are often defined with respect to their input and output modalities and their
task functionalities. For example, Visual ChatGPT [Wu et al., 2023] defines a family of 22+ vision
and language foundation models, such as ChatGPT [OpenAI, 2022] (language generation), SAM [Kir-
illov et al., 2023] (image segmentation), and StableDiffusion [Rombach et al., 2022] (text-to-image
generation) for holistic reasoning over text and images. In addition to enabling new compositional
applications, modularity offers the promise of interpretability, reusability, and debugging for complex
workflows, each of which poses a major challenge for real-world AI deployments.

This paper presents progress towards scalable and flexible reinforcement learning (RL) through the
introduction of a new modular probabilistic framework based on deep generative models. Prior work
in modular RL focuses on spatiotemporal abstractions that simplify complex goals via hierarchical
RL, e.g., [McGovern and Barto, 2001, Andreas et al., 2017, Simpkins and Isbell, 2019, Ahn et al.,
2022, Kulkarni et al., 2016, Mendez et al., 2021]. Distinct but complementary to the prior lines of
work, our motivating notion of modularity is based on enforcing token-level hierarchies in generative
models of trajectories. In the context of RL, trajectories typically consist of a multitude of different
tokens of information: goals, observations, rewards, actions. As shown in many recent works [Chen
et al., 2021, Janner et al., 2021, 2022, Ajay et al., 2022, Zheng et al., 2022, Reed et al., 2022], we can
effectively reduce RL to probabilistic inference [Levine, 2018] via learning deep generative models

1The project website and code can be found here: https://siyan-zhao.github.io/decision-stacks/

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://siyan-zhao.github.io/decision-stacks/

over token sequences. However, these frameworks lack any modular hierarchies over the different
tokens leading to adhoc choices of generative architectures and objectives, as well as conditional
independence assumptions that can be suboptimal for modeling long trajectory sequences.

We introduce Decision Stacks, a family of generative algorithms for goal-conditioned RL featuring a
novel modular design. In Decision Stacks, we parameterize a distinct generative model-based module
for future observation prediction, reward estimation, and action generation and chain the outputs
of each module autoregressively. See Figure 1 for an illustration. While our factorization breaks
the canonical time-induced causal ordering of tokens, we emphasize that the relative differences in
different token types is significant to necessitate token-level modularity for learning effective policies
and planners. Besides semantic differences, the different token types also show structural differences
with respect to dimensionalities, domains types (discrete or continuous), modalities (e.g., visual
observations, numeric rewards), and information density (e.g., rewards can be sparse, state sequences
show relatively high continuity). Instead of modeling the token sequence temporally, parameterizing
a distinct module for each token type can better respect these structural differences. In contrast,
previous works like Decision Transformer Chen et al. [2021], Trajectory Transformer Janner et al.
[2021] and Diffuser Janner et al. [2022] chained states, actions, and, in some cases, rewards within a
single temporal model.

In practice, we can train each module in Decision Stacks independently using teacher forcing
[Williams and Zipser, 1989], which avoids additional training time as the three modules can be
trained in parallel. Decision Stacks shares similarities with many recent works [Janner et al., 2021,
Ajay et al., 2022, Janner et al., 2022] that aim to reduce planning to sampling from a generative
model. However, our modular design offers additional flexibility and expressivity. Each generative
module itself is not restricted to being an autoregressive model and we experiment with modules
based on transformers, diffusion models, and novel hybrids. Each generative modeling family
makes tradeoffs in architecture, sampling efficiency, and can show varied efficacy for different data
modalities. Decision Stacks also brings compositional generalization in scenarios where the modules
can be reused across varied tasks or environments. A modular design that easily allows for the use of
arbitrary generative models, along with an autoregressive chaining across the modules permits both
flexibility and expressivity.

Empirically, we evaluate Decision Stacks on a range of domains in goal-conditioned planning and
offline RL benchmarks for both MDPs and POMDPs. We find that the joint effect of modular
expressivity and flexible parameterization in our models provides significant improvements over
existing offline RL methods. This holds especially in partially observable settings, where Decision
Stacks achieves a 15.7% performance improvement over the closest baseline, averaged over 9 offline
RL setups. We also demonstrate the flexibility of our framework by extensive ablation studies over
the choice of generative architectures and inputs for each module.

2 Preliminaries

2.1 Goal conditioned POMDPs

We operate in the formalism of goal-conditioned Partially Observable Markov Decision Processes
(POMDP) defined by the tuple M := (O,S,A,G,P,R, E , γ, p0(s), T). Respectively, O and S
denote the observation space and the underlying state space, which are fully observable in the case
of MDPs. A, the action space, is consistent with that of MDPs. In the goal-condition setting, G
specifies the task goal distribution which could be e.g., a language instruction or a visual destination
state for multi-task policies, or a designed cumulative return for single-task policies. The transition
probability function, P : S × A × S → [0, 1], describes the transition dynamics. Meanwhile,
R : G × S ×A 7→ R defines the rewards that the decision-maker receives after performing action
a in state s. The observation emission model E = P (o|s), determines the probability of observing
o in state s. The γ, p0 (s0), and T denote the discount factor [Puterman, 2014], initial latent state
distribution, and horizon of an episode. In a POMDP context, the observations generated from
the underlying state are intrinsically non-Markovian. The goal-conditioned RL objective is to find
the optimal policy π∗ that maximizes the expected cumulative discounted reward over the episode
horizon: ηM := EG∼G,at∼π(·|st,g),st+1∼P(·|st,at),

[∑T
t=0 γ

tr (st, at, G)
]
.

2

Observation
Prediction

Reward
Estimation

Action
Generation

P (o1:T | o0, G) P (r0:T | o0:T , G) P (a0:T | o0:T , r0:T , G)

0.01 0.28 0.41 0.98

Goal G
Initial Observation o0

Figure 1: Illustration for the Decision Stacks framework for learning reinforcement learning agents
using probabilistic inference. In contrast to a time-induced ordering, we propose a modular design
that segregates the modeling of observation, rewards, and action sequences. Each module can be
flexibly parameterized via any generative model and the modules are chained via an autoregressive
dependency graph to provide high overall expressivity.

2.2 Offline reinforcement learning

Offline reinforcement learning (RL) is a paradigm for policy optimization where the agent is only
given access to a fixed dataset of trajectories and cannot interact with the environment to gather
additional samples. Offline RL can be useful in domains where collecting data online is challenging
or infeasible such as healthcare [Murphy et al., 2001] and autonomous driving. A major obstacle in
offline RL is dealing with distributional shifts. If we naively use Bellman backup for learning the
Q-function of a given policy, the update which relies on the actions sampled from policy π can learn
inaccurately high values for out-of-distribution actions, leading to instability in the bootstrapping
process and causing value overestimation [Kumar et al., 2020].

2.3 Generative models: Autoregressive transformers and Diffusion models

In this work, we are interested in learning the distribution pdata(x|c) using a dataset D consisting
of trajectory samples x and conditioning c. We consider two conditional generative models for
parameterizing our agent policies to learn the distribution:

Transformer is a powerful neural net architecture for modeling sequences [Vaswani et al., 2017]. It
consists of multiple identical blocks of multi-head self-attention modules and position-wise fully-
connected networks. The vanilla transformer can be modified with a causal self-attention mask to
parameterize an autoregressive generative model as in GPT [Radford et al., 2018]. Autoregressive
generative models, such as the transformers, factorize the joint distribution p(x1, . . . , xn) as a product
of conditionals, which can be represented as: p(x) =

∏n
i=1 p(xi|x<i). This equation shows that the

probability of each variable xi depends on the previous variables x1, . . . , xi−1. One advantage of this
factorization is that each conditional probability can be trained independently in parallel via teacher
forcing [Williams and Zipser, 1989]. In autoregressive generation, sampling is done sequentially,
where each variable xi is sampled based on its preceding variables.

Diffusion Models [Sohl-Dickstein et al., 2015, Ho et al., 2020] are latent variable models that consist
of a predefined forward noising process q(xk+1|xk) := N (xk+1;

√
αkxk, (1−αk)I) that gradually

corrupts the data distribution q(x0) into N (0, I) in K steps, and a learnable reverse denoising
process pθ(xk−1|xk) := N (xk−1|µθ(xk, k),Σk). For sampling, we first generate a latent sample
from the Gaussian prior N (0, I) and gradually denoise it using the learned model pθ(xk−1|xk) for

3

Figure 2: Graphical model for the data genera-
tion process in a POMDP. Here, we show the case
where the behavioral policy can potentially act
based on hidden state information. The dashed cir-
cles implies that this state information is not stored
in the offline dataset. G represents the task condi-
tioning, e.g., a target return (for single-task agents)
or a navigation goal (for multi-task agents).

K steps to obtain the data sample x0. Diffusion models can be extended for conditional generation
using classifier-free guidance [Ho and Salimans, 2022] where a conditional ϵθ (xk, c, k) and an
unconditional ϵθ (xk, k) noise model is trained. Conditional data is sampled with the perturbed noise
ϵθ (xk, k)+ω (ϵθ (xk, c, k)− ϵθ (xk, k)), where ω is the guidance strength and c is the conditioning
information.

3 Flexible and Modular RL via Decision Stacks

In Figure 2, we consider a directed graphical model for the data generation process in Partially
Observable Markov Decision Processes (POMDP) Kaelbling et al. [1998]. The environment encodes
the underlying state transitions P (st+1|st, at), goal-dependent reward function P (rt|st, at, G), and
the observation emission probability P (ot|st). Unlike the learning agent which only has access to
observations, the behavioral policy used for generating the offline trajectory dataset might also have
access to the hidden state information. Such a situation is common in real-world applications, e.g.,
a human demonstrater may have access to more information about its internal state than what is
recorded in video demonstration datasets available for offline learning. Finally, note that a Markov
Decision Process (MDP) can be viewed as a special case of a POMDP, where the observation at
each timestep, ot, matches the underlying state, st. To avoid ambiguity, we overload the use of ot to
denote both the state and observation in an MDP at time t.

In the context of goal-conditioned decision-making, a finite-horizon trajectory in the offline dataset
D is composed of a goal G and a sequence of observations, actions, and reward tokens.

τ = (G, o0, a0, r0, . . . , ot, at, rt, . . . , oT , aT , rT) . (1)

Our primary objective lies in learning a goal-conditioned distribution for Pdata(a0:T , o1:T , r0:T |o0, G)
conditioned on an arbitrary goal G ∈ G and an initial observation o0 ∈ O. Leveraging the chain rule
of probability, we can factorize this joint distribution into a product of conditional probabilities. For
example, Janner et al. [2021] use a time-induced autoregressive factorization:

Pdata (a0:T , o1:T , r0:T | o0, G) ≈
T∏

t=1

Pθ(ot|τ<t)

T∏
t=0

Pθ(rt|ot, τ<t)

T∏
t=0

Pθ(at|ot, rt, τ<t) (2)

where τ<t denotes all the tokens in the trajectory before time t. Each conditional factor is parameter-
ized via an autoregressive transformer with shared parameters θ. If the parameterization is sufficiently
expressive, any choice of ordering for the variables suffices. However, in practice, we are limited by
the size of our offline dataset and the choice of factorization can play a critical role.

In Decision Stacks, we propose to use a modular factorization given as:

Pdata (a0:T , o1:T , r0:T | o0, G) ≈ Pθ1 (o1:T | o0, G)︸ ︷︷ ︸
observation module

·Pθ2 (r0:T | o0:T , G)︸ ︷︷ ︸
reward module

·Pθ3 (a0:T | o0:T , r0:T , G)︸ ︷︷ ︸
action module

.

(3)

Each of the 3 modules (observations, rewards, or actions) focuses on predicting a distinct component
of the POMDP and has its own set of parameters (θ1, θ2, θ3). Our motivation stems from the fact
that in real-world domains, each component is sufficiently distinct from the others in its semantics
and representation. Such variances span across a multitude of factors including dimensionalities,
domain types (discrete or continuous), modalities (e.g., visual observations, numeric rewards), and
information density (e.g., rewards can be sparse, state sequences show relatively high continuity).

4

Modular Expressivity. In Eq. 3, each module is chained autoregressively with the subsequent
modules. This is evident as the output variables of one module are part of the input variables for
all the subsequent modules. Under idealized conditions where we can match each module to the
data conditional, this autoregressive structure enables maximal expressivity, as autoregressive models
derived from the chain rule of probability can in principle learn any data distribution given enough
model capacity and training data. Further, our explicit decision to avoid any parameter sharing across
modules also permits trivial hardware parallelization and transfer to new environments with shared
structure.

Flexible Generative Parameterization. Since each module predicts a sequence of objects, we
use any deep generative model for expressive parameterization of each module. Our experiments
primarily focus on autoregressive transformers and diffusion models. We also consider hybrid
combinations, as they are easy to execute within our framework and can avoid scenarios where
individual model families suffer, e.g., diffusion models lag behind transformer for discrete data;
whereas transformers are generally poor for modeling continuous signals such as image observations.
In real-world environments, many of these challenges could simultaneously occur such as agents
executing discrete actions given continuous observations. Finally, each module is conditioned on
a goal. For training a multi-task agent, the goal can be specified flexibly as spatial coordinates, a
visual image, a language instruction, etc. For single-task agents, we specify the goal as the trajectory
returns during training and desired expert-valued return during testing, following prior works in
return-conditioned offline RL [Chen et al., 2021, Emmons et al., 2021].

Learning and Inference. Given an offline dataset, each module can be trained in parallel using
teacher forcing [Williams and Zipser, 1989]. At test-time, our framework naturally induces a planner,
as in order to predict an action at time t, we also need to predict the future observations and rewards.
We can execute either an open-loop or closed-loop plan. Open-loop plans are computationally
efficient as they predict all future observations and rewards at once, and execute the entire sequence
of actions. In contrast, a closed-loop plan is likely to be more accurate as it updates the inputs to
the modules based on the environment outputs at each time-step. Using a closed-loop plan, we can
sample the action at time t as follows:

ôt+1:T ∼ Pθ1 (ot+1:T | o0:t, G) (4)
r̂t+1:T ∼ Pθ2 (rt+1:T | r0:t, o0:t, ôt+1:T , G) (5)

ât ∼ Pθ3 (at | a0:t−1, o0:t, ôt+1:T , r0:t, r̂t+1:T , G) (6)
The hat symbol (^) indicates predicted observations, rewards, and actions, while its absence de-
notes observations, rewards, and actions recorded from the environment and the agent in the pre-
vious past timesteps. For closed-loop planning, Eqs. 4, 5, 6 require us to condition the joint
observation, reward and action distributions on the past trajectory tokens. For a module that is
parameterized autoregressively, this is trivial as we can simply choose a time-induced ordering
and multiply the conditionals for the current and future timesteps. For example, if the observa-
tion module is an autoregressive transfer, then we can obtain the sampling distribution in Eq. 4 as:
Pθ1 (ot+1:T | o0:t, G) =

∏T
i=t+1 Pθ1 (oi | o<i, G) . For a diffusion model, this task is equivalent to

inpainting and can be done by fixing the environment observations until time t at each step of the
denoising process [Janner et al., 2022].

Distinction with Key Prior Works. We will include a more detailed discussion of broad prior
works in §5 but discuss and contrast some key baselines here. While the use of generative models for
goal-conditioned offline RL is not new, there are key differences between Decision Stacks and recent
prior works. First, we choose a planning approach unlike other model-free works, such as Decision
Transformers [Chen et al., 2021] and diffusion-based extensions [Wang et al., 2022]. Second, there
exist model-based approaches but make different design choices; Trajectory Transformer [Janner et al.,
2021] uses a time-induced causal factorization parameterized by a single autoregressive transformer,
Diffuser [Janner et al., 2022] uses diffusion models over stacked state and action pairs, Decision
Diffuser [Ajay et al., 2022] uses diffusion models for future state prediction and an MLP-based
inverse dynamics model to extract actions. Unlike these works, we propose a modular structure
that is maximally expressive as it additionally models reward information and does not make any
conditional independence assumption for the state, reward and action modules. As our experiments
demonstrate, the modular expressivity and architectural flexibility in Decision Stacks are especially
critical for goal-conditioned planning and dealing with partial observability.

5

Table 1: Performance on Maze2D tasks. DS significantly outperforms other baselines without the
need for a handcoded controller. Note that DD and DS share the same diffusion-based observation
model architecture and hence with a handcoded controller, their performance is the same. We average
the results over 15 random seeds and emphasize in bold scores within 5 percent of the maximum per
task (≥ 0.95 ·max).

Task Environment MPPI CQL IQL Diffuser DD DS
Diffuser with

Handcoded Controller
DS / DD with

Handcoded Controller

Single Goal

umaze 33.2 5.7 47.4 86.9 ±26.4 113.8 ±11.3 111.3 ±12.2 113.9 ±3.1 119.5 ±2.6

medium 10.2 5.0 34.9 108.5 ±17.4 103.7 ±21.2 111.7 ±2.4 121.5 ±2.7 112.9 ±11.8

large 5.1 12.5 58.6 45.4 ±14.5 111.8 ±43.4 171.6 ±13.4 123.0 ±6.4 132.8 ±21.0

Average 16.2 7.7 47.0 80.2 109.8 131.5 119.5 121.7

Multi Goals

umaze 41.2 - 24.8 114.4 ±16.3 105.6 ±14.5 121.3 ±12.2 129.0 ±1.8 136.1 ±4.2

medium 15.4 - 12.1 54.6 ±14.5 126.4 ±14.3 122.3 ±3.7 127.2 ±3.4 124.6 ±11.3

large 8.0 - 13.9 41.0±20.1 116.0 ±33.1 126.7 ±21.8 132.1 ±5.8 134.8 ±12.3

Average 21.5 - 16.9 70.0 111.6 123.4 129.4 131.8

4 Experiments

Our experiments aim to answer the following questions:
§4.1 How does Decision Stacks perform for long-horizon multi-task planning problems?
§4.2 How does Decision Stacks compare with other offline RL methods in MDP environments?
§4.3 How does Decision Stacks compare with other offline RL methods in POMDP environments?
§4.4 How does the architectural feasibility for each module affect downstream performance? How
does the modularity enable compositional generalization? How important is the role of reward
modeling for Decision Stacks?

For §4.1, §4.2, and §4.3, we experiment with D4RL environments and parameterize Decision Stacks
with a diffusion-based observation model, an autoregressive transformer-based reward model, and an
autoregressive transformer-based action model. Finally, in §4.4, we will ablate the full spectrum of
architecture design choices for each module.

4.1 Long-Horizon Goal-Conditioned Environments

We first test for the planning capabilities of Decision Stacks on the Maze2D task from the D4RL [Fu
et al., 2020] benchmark. This is a challenging environment requiring an agent to generate a plan
from a start location to a goal location. The demonstrations contain a sparse reward signal of +1 only
when the agent reaches close to the goal. Following Janner et al. [2022], we consider 2 settings. In
the Single Goal setting, the goal coordinates are fixed, and in the Multi Goal setting, the goals are
randomized at test-time. We compare against classic trajectory optimization techniques that have
knowledge of the environment dynamics (MPPI [Williams et al., 2015], extensions of model-free
RL baselines (CQL [Kumar et al., 2020] and IQL [Kostrikov et al., 2021]), and the two most closely
related works in generative planning based on diffusion models: Diffuser [Janner et al., 2022] and
Decision Diffuser (DD) [Ajay et al., 2022].

We show our results in Table 1 for different goal types and maze grids. While Janner et al. [2022]
previously demonstrated remarkable ability in generating long-horizon plans using Diffuser, their
trajectory plans were executed by a handcoded controller. However, we experimentally found that
Diffuser and DD’s own generated actions fail to perfectly align with their generated plans, as shown
in the example rollouts in Figure 3. We hypothesize this could stem from the lack of modularity in
Diffuser affecting the generation fidelity, or the lack of expressivity in using an MLP-based inverse
dynamics model in DD which limits the context length required for long-horizon planning. In contrast,
we find that DS generates robust trajectory plans and matching action sequences with significant
improvements over baselines.

4.2 Offline Reinforcement Learning Performance in MDPs

Next, we examine the performance of Decision Stacks in offline RL tasks across various high-
dimensional locomotion environments from the D4RL offline benchmark suite [Fu et al., 2020] in
Table 2. We compare Decision Stacks (DS) with other offline RL algorithms including imitation
learning via Behavior Cloning (BC), value-based approaches like IQL [Kostrikov et al., 2021] and
CQL [Kumar et al., 2020], model-based algorithm MOReL [Kidambi et al., 2020], transformer-based

6

Diffuser

DD

DS

Diffuser with
Handcoded Controller

Goal

DS / DD with
Handcoded Controller

Figure 3: Example rollouts on the Maze2D-medium-v1 environment. The goal is located at the
bottom right corner of the maze. The trajectory waypoints are color-coded, transitioning from blue to
red as time advances. The bottom two rows demonstrates that Diffuser, DD, and DS are all capable of
generating good plans that can be executed well with a handcoded controller. However, the respective
action models result in differing executions. Compared to DD and Diffuser, DS generates smoother
trajectories that are more closely aligned with the future waypoints planned by the observation model.

generative models such as Decision Transformer (DT) [Chen et al., 2021] and Trajectory Transformer
(TT) [Janner et al., 2021], and diffusion-based generative models Diffuser [Janner et al., 2022] and
Decision Diffuser (DD) [Ajay et al., 2022]. In our evaluation, we also included our reproduced scores
for DD. DD uses the same architecture for observation prediction as Decision Stacks and is hence,
the closest baseline. However, we found its performance to be sensitive to return conditioning and in
spite of an extensive search for hyperparameters and communication with the authors, our reproduced
numbers are slightly lower. We provide more details in the Appendix. For a fair comparison, we used
the same set of hyperparameters that give the best performance for the DD baseline.

We show results averaged over 15 planning seeds and normalize the scores such that a value of
100 represents an expert policy, following standard convention [Fu et al., 2020]. Decision Stacks
outperforms or is competitive with the other baselines on 6/9 environments and is among the highest
in terms of aggregate scores. These results suggest that even in environments where we can make
appropriate conditional independence assumptions using the MDP framework, the expressivity in the
various modules of Decision Stacks is helpful for test-time generalization.

4.3 Offline Reinforcement Learning Performance in POMDPs

Next we consider the POMDP setting where the logged observations are incomplete representations
of the underlying states. To generate the POMDPs datasets, we exclude the two velocity dimensions
from the full state representation, which consists of both positions and velocities. This simulates a
lack of relevant sensors. A sensitivity analysis on dimension occlusions further strengthens our results,
as shown in Appendix Table 7. DS continues to outperform other baselines for each environment from
the D4RL locomotion datasets. We report our results in Table 3 and compare against other generative
baselines. Decision Stacks (DS), consistently achieves competitive or superior results compared to
the other algorithms, including BC, DT, TT, and DD. Notably, DS outperforms other methods in

7

Table 2: Offline Reinforcement Learning Performance in MDP. Our results are averaged over 15
random seeds. Following Kostrikov et al. [2021], we bold all scores within 5 percent of the maximum
per task (≥ 0.95 ·max).

Dataset Environment BC IQL CQL DT TT MOReL DD
DD

(reproduced) Diffuser DS (ours)

Medium-Expert HalfCheetah 55.2 86.7 91.6 86.8 95.0 53.3 90.6 91.5 ±2.5 79.8 95.7 ±0.3

Medium-Expert Hopper 52.5 91.5 105.4 107.6 110.0 108.7 111.8 111.6 ±2.8 107.2 107.0 ±3.2

Medium-Expert Walker2d 107.5 109.6 108.8 108.1 101.9 95.6 108.8 105.2±2.3 108.4 108.0 ±0.1

Medium HalfCheetah 42.6 47.4 44.0 42.6 46.9 42.1 49.1 46.4±5.1 44.2 47.8 ±0.4

Medium Hopper 52.9 66.3 58.5 67.6 61.1 95.4 79.3 81.2 ±7.2 58.5 76.6 ±4.2

Medium Walker2d 75.3 78.3 72.5 74.0 79.0 77.8 82.5 79.9±5.3 79.7 83.6 ±0.3

Medium-Replay HalfCheetah 36.6 44.2 45.5 36.6 41.9 40.2 39.3 39.4±1.5 42.2 41.1 ±0.1

Medium-Replay Hopper 18.1 94.7 95.0 82.7 91.5 93.6 100 95.3±3.7 96.8 89.5 ±4.2

Medium-Replay Walker2d 26.0 73.9 77.2 66.6 82.6 49.8 75 72.3±3.1 61.2 80.7 ±1.5

Average 51.9 77.0 77.6 74.7 78.9 72.9 82.2 80.3 75.3 81.1

most environments and attains the highest average score of 74.3, which reflects a 15.7% performance
improvement over the next best-performing approach Diffuser. This highlights the effectiveness of
our approach in handling POMDP tasks by more expressively modeling the dependencies among
observations, actions, and rewards.

Table 3: Offline Reinforcement Learning Performance in POMDP. Our results are averaged
over 15 random seeds. Following Kostrikov et al. [2021], we bold all scores within 5 percent of the
maximum per task (≥ 0.95 ·max).

Dataset Environment BC DT TT DD Diffuser DS (ours)

Medium-Expert HalfCheetah 42.1 80.8 94.9 19.07 82.2 92.7 ±0.8

Medium-Expert Hopper 51.1 105.2 61.6 32.7 70.7 110.9 ±0.4

Medium-Expert Walker2d 51.3 106.0 51.7 74.8 82.4 94.1 ±8.5

Medium HalfCheetah 43.3 42.7 46.7 40.3 45.4 47.1 ±0.3

Medium Hopper 36.4 63.1 55.7 38.1 62.2 57.7 ±3.9

Medium Walker2d 39.4 64.2 28.5 53.2 55.7 74.3 ±4.2

Medium-Replay HalfCheetah 2.1 35.5 43.8 39.8 39.3 40.3 ±1.2

Medium-Replay Hopper 24.3 78.3 84.4 22.1 80.9 86.9 ±2.6

Medium-Replay Walker2d 23.8 45.3 10.2 58.4 58.7 66.8 ±1.8

Average 34.9 47.9 53.0 42.0 64.2 74.3

4.4 Architectural Flexibility and Compositional Generalization

Table 4: Performance on Hopper-medium-v2 POMDP using various reward and action models, with
diffusion-based or transformer-based observation model. In each choice of observation model, the
algorithm with the highest performance is highlighted.

Reward models Action models
Transformer Diffusion MLP Transformer Diffusion MLP

Transformer 57.7 ±3.9 58.2 ±4.3 45.6 ±4.1 53.0 ±3.7 54.3 ±3.3 36.7 ±4.2

Diffusion 51.7 ±1.7 56.9 ±2.2 36.3 ±3.1 58.0 ±4.4 46.9 ±3.7 34.9 ±3.5

MLP 56.0 ±3.5 52.6 ±2.5 33.3 ±3.0 55.0 ±3.9 52.1 ±2.7 42.5 ±4.1

Diffusion-based observation model Transformer-based observation model

Decision Stacks distinctly separates the prediction of observations, rewards, and actions employing
three distinct models that can be trained independently using teacher forcing. In this section, we
explore the additional flexibility offered by different architecture choices for each module. For
observation, reward, and action prediction, we consider diffusion models and Transformer-based
autoregressive models. For reward and action models, we additionally consider MLPs that are
restricted in their window and only look at the immediate state information to make a decision. The

8

Table 5: Ablation results comparing the performance of action models with and without reward
information as input, across different architectures, in the dense reward POMDP task of Hopper-
medium-v2. The results suggests a clear advantage when incorporating reward modeling.

Observation model
Action models

without reward modelling
Action models

with reward modelling
Transformer Diffusion MLP Transformer Diffusion MLP

Diffusion-based 43.6 ±1.3 43.7 ±3.4 38.1 ±2.1 57.7 ±3.9 58.2 ±4.3 45.6 ±4.1

Transformer-based 45.1 ±5.2 39.4 ±3.2 39.6 ±3.7 58.0 ±4.4 54.3 ±3.3 42.5 ±4.1

results shown in Table 4 display a combination of 2x3x3 policy agents for the Hopper-medium v2
POMDP environment. Since we adopt a modular structure, we can compose the different modules
efficiently and hence, we only needed to train 2 (state) + 3 (reward) + 3 (action) models. In Table 4,
we find that the performance of pure transformer- or diffusion-based Decision Stacks gives reasonable
performance (transformers: 53.0, diffusion: 56.9) but these pure combinations can be slightly
outperformed by hybrids, e.g., the best achieving entry (58.2) in Table 4 uses a diffusion-based
obsevation model, a transformer-based reward model and a diffusion-based action model. MLPs
generally are outperformed by generative architectures, especially when used for modeling actions.

In addition to architectural flexibility, DS’s modularity also supports compositional transfer across
tasks. The lack of parameter sharing across modules not only enables hardware parallelization but
also enables the transfer of modules to new environments. As shown in table 6, we created modified
versions of the Maze2d-Umaze-v2 environment, altering action and reward spaces while keeping
the observation model consistent. Both the reward and observation models were kept consistent
during transfers between different action spaces. A single observation model was shared across
six environments, and each of the two reward models was utilized across three action spaces. Our
findings show that DS promotes efficient learning and compositional generalization, emphasizing its
modular efficiency in scenarios with reusable components across varied tasks or environments.

Table 6: Experiments on Compositional Generalization. In the Maze2d-Umaze-v2 environment,
we analyze both dense and sparse rewards. For the action space, we consider three variations of
the force on a 2D ball: 1) Unscaled Force: the original force applied to the ball in the 2D maze
environment; 2) Reflected Force: the original force mirrored across the x-axis; 3) Rotated Force: the
original force rotated 30 degrees counterclockwise, altering the direction of the applied force. Each
row shares the same reward model and observation model across the three different action spaces.
The results underscore the modular efficiency of DS in scenarios where reusable components exist
across different tasks or environments. The standard error is reported, and the results are averaged
over 15 random seeds.

Action Space
Unscaled Force Reflected Force Rotated Force

Reward Space dense 93.2± 10.7 90.3± 9.1 102.9± 8.1

sparse 111.3± 12.2 102.6± 3.9 115.2± 8.0

Furthermore, we compare the best reward modeling architectures with alternatives that do not consider
rewards. This is standard practice for Diffuser [Janner et al., 2022] and Decision Diffuser (DD) [Ajay
et al., 2022]. For example, DD predict the action at time t only based on the current observation and
next observation, P (at|ot, ot+1), parameterized via an MLP. As delineated in Table 5, the inclusion
of reward models significantly boosts performance in the dense reward POMDP environment. We
include additional analysis and discussion in the Appendix D.

5 Related works

Offline Reinforcement Learning is a paradigm that for learning RL policies directly from previously
logged interactions of a behavioral policy. The key challenge is that any surrogate models trained on
an offline dataset do not generalize well outside the dataset. Various strategies have been proposed to
mitigate the challenges due to distribution shifts by constraining the learned policy to be conservative

9

and closely aligned with the behavior policy. These include learning a value function that strictly
serves as a lower bound for the true value function in CQL [Kumar et al., 2020], techniques focus
on uncertainty estimation such as Kumar et al. [2019], and policy regularization methods [Wu
et al., 2019, Ghasemipour et al., 2021, Kumar et al., 2019, Fujimoto and Gu, 2021, Fujimoto et al.,
2019]. Model-based methods like MORel [Kidambi et al., 2020] and ReBeL [Lee et al., 2021] add
pessimism into the dynamics models. In the context of partially observed settings, Rafailov et al.
[2021] extends model-based offline RL algorithms by incorporating a latent-state dynamics model for
high-dimensional visual observation spaces, effectively representing uncertainty in the latent space
and Zheng et al. [2023] derive algorithms for offline RL in settings where trajectories might have
missing actions. Our work takes the RL as inference perspective [Levine, 2018] and employs the
tools of probabilistic reasoning and neural networks for training RL agents.

Generative models for offline RL. Over the past few years, the RL community has seen a growing
interest in employing generative models for context-conditioned sequence generation by framing
the decision-making problem as a generative sequence prediction problem. Here, we expand on our
discussion from §3 with additional context and references. Decision Transformer [Chen et al., 2021]
and Trajectory Transformer [Janner et al., 2021] concurrently proposed the use of autoregressive
transformer-based models [Radford et al., 2018] for offline RL in model-based and model-free setups.
Online decision transformer [Zheng et al., 2022] further finetunes the offline pretrained policies in
online environments through a sequence-level exploration strategy. GATO [Reed et al., 2022, Lee
et al., 2022] and PEDA [Zhu et al., 2023] scale these models to multi-task and multi-objective settings.
MaskDP Liu et al. [2022] shows that other self-supervised objectives such as masking can also
enable efficient offline RL, especially in goal-conditioned settings. These advancements have also
been applied to other paradigms in sequential decision making such as black-box optimization and
experimental design [Nguyen and Grover, 2022, Krishnamoorthy et al., 2023a,b]. Recent works have
shown that changing the generative model from transformer to a diffuser with guidance can improve
performance in certain environments and also permit planning for model-based extensions [Janner
et al., 2021, Ajay et al., 2022, Wang et al., 2022, Chen et al., 2022]. Dai et al. [2023] considers an
extension where the state model is a pretrained text2image model and actions are extracted from
consecutive image frames. As discussed in §3, these works make specific design choices that do not
guarantee the modularity, flexibility, and expressivity ensured by our framework.

6 Conclusion

We proposed Decision Stacks, a modular approach for learning goal-conditioned policies using
offline datasets. Decision Stacks comprises of 3 modules tasked with the prediction of observations,
rewards, and actions respectively. In doing so, we strive for the twin benefits of expressivity
through autoregressive conditioning across the modules and flexibility in generative design within
any individual module. We showed its empirical utility across a range of offline RL evaluations
for both MDP and POMDP environments, as well as long-horizon planning problems. In all these
settings, Decision Stacks matches or significantly outperforms competing approaches while also
offering significant flexibility in the choice of generative architectures and training algorithms.

Limitations and Future Work. Our experiments are limited to state-based environments and
extending Decision Stacks to image-based environments is a promising direction for future work
especially in light of the gains we observed for POMDP environments. We are also interested in
exploring the benefits of a modular design for pretraining and transfer of modules across similar
environments and testing their generalization abilities. Finally, online finetuning of Decision Stacks
using techniques similar to Zheng et al. [2022] is also an exciting direction of future work.

Acknowledgments

This research is supported by a Meta Research Award.

10

References
M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakrishnan,

K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey,
S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine, Y. Lu, L. Luu,
C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Sievers,
C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and A. Zeng. Do as i can
and not as i say: Grounding language in robotic affordances. In arXiv preprint arXiv:2204.01691,
2022.

A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional generative
modeling all you need for decision-making? arXiv preprint arXiv:2211.15657, 2022.

J. Andreas, D. Klein, and S. Levine. Modular multitask reinforcement learning with policy sketches.
In International Conference on Machine Learning, pages 166–175. PMLR, 2017.

H. Chen, C. Lu, C. Ying, H. Su, and J. Zhu. Offline reinforcement learning via high-fidelity generative
behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and I. Mordatch.
Decision transformer: Reinforcement learning via sequence modeling. Advances in neural
information processing systems, 34:15084–15097, 2021.

Y. Dai, M. Yang, B. Dai, H. Dai, O. Nachum, J. Tenenbaum, D. Schuurmans, and P. Abbeel. Learning
universal policies via text-guided video generation. arXiv preprint arXiv:2302.00111, 2023.

S. Emmons, B. Eysenbach, I. Kostrikov, and S. Levine. Rvs: What is essential for offline rl via
supervised learning? arXiv preprint arXiv:2112.10751, 2021.

J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

S. Fujimoto and S. S. Gu. A minimalist approach to offline reinforcement learning. Advances in
neural information processing systems, 34:20132–20145, 2021.

S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without exploration.
In International conference on machine learning, pages 2052–2062. PMLR, 2019.

S. K. S. Ghasemipour, D. Schuurmans, and S. S. Gu. Emaq: Expected-max q-learning operator for
simple yet effective offline and online rl. In International Conference on Machine Learning, pages
3682–3691. PMLR, 2021.

J. Ho and T. Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598, 2022.

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big sequence modeling
problem. Advances in neural information processing systems, 34:1273–1286, 2021.

M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior
synthesis. arXiv preprint arXiv:2205.09991, 2022.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims. Morel: Model-based offline reinforcement
learning. Advances in neural information processing systems, 33:21810–21823, 2020.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations (ICLR), 2015.

A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.
Berg, W.-Y. Lo, P. Dollár, and R. Girshick. Segment anything. arXiv:2304.02643, 2023.

11

I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning. arXiv
preprint arXiv:2110.06169, 2021.

S. Krishnamoorthy, S. M. Mashkaria, and A. Grover. Generative pretraining for black-box optimiza-
tion. In International Conference on Machine Learning (ICML), 2023a.

S. Krishnamoorthy, S. M. Mashkaria, and A. Grover. Diffusion models for black-box optimization.
In International Conference on Machine Learning (ICML), 2023b.

T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum. Hierarchical deep reinforcement
learning: Integrating temporal abstraction and intrinsic motivation. Advances in neural information
processing systems, 29, 2016.

A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine. Stabilizing off-policy q-learning via bootstrapping
error reduction. Advances in Neural Information Processing Systems, 32, 2019.

A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforcement
learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

B.-J. Lee, J. Lee, and K.-E. Kim. Representation balancing offline model-based reinforcement
learning. In International Conference on Learning Representations, 2021.

K.-H. Lee, O. Nachum, M. S. Yang, L. Lee, D. Freeman, S. Guadarrama, I. Fischer, W. Xu, E. Jang,
H. Michalewski, et al. Multi-game decision transformers. Advances in Neural Information
Processing Systems, 35:27921–27936, 2022.

S. Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review. arXiv
preprint arXiv:1805.00909, 2018.

F. Liu, H. Liu, A. Grover, and P. Abbeel. Masked autoencoding for scalable and generalizable
decision making. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

A. McGovern and A. G. Barto. Automatic discovery of subgoals in reinforcement learning using
diverse density. In International Conference on Machine Learning (ICML), 2001.

J. A. Mendez, H. van Seijen, and E. EATON. Modular lifelong reinforcement learning via neural
composition. In International Conference on Learning Representations, 2021.

D. Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint
arXiv:1908.08681, 2019.

S. A. Murphy, M. J. van der Laan, J. M. Robins, and C. P. P. R. Group. Marginal mean models for
dynamic regimes. Journal of the American Statistical Association, 96(456):1410–1423, 2001.

T. Nguyen and A. Grover. Transformer neural processes: Uncertainty-aware meta learning via
sequence modeling. In International Conference on Machine Learning (ICML), 2022.

T. Nguyen, Q. Zheng, and A. Grover. Reliable conditioning of behavioral cloning for offline
reinforcement learning. arXiv preprint arXiv:2210.05158, 2022.

OpenAI. Openai: Introducing chatgpt, 2022. URL https://openai.com/blog/chatgpt.

M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley
& Sons, 2014.

A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding by
generative pre-training. In preprint, OpenAI, 2018.

R. Rafailov, T. Yu, A. Rajeswaran, and C. Finn. Offline reinforcement learning from images with
latent space models. In Learning for Dynamics and Control, pages 1154–1168. PMLR, 2021.

S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,
Y. Sulsky, J. Kay, J. T. Springenberg, T. Eccles, J. Bruce, A. Razavi, A. Edwards, N. Heess, Y. Chen,
R. Hadsell, O. Vinyals, M. Bordbar, and N. de Freitas. A generalist agent, 2022.

12

https://openai.com/blog/chatgpt

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10684–10695, June 2022.

C. Simpkins and C. Isbell. Composable modular reinforcement learning. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, pages 4975–4982, 2019.

J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International Conference on Machine Learning, pages
2256–2265. PMLR, 2015.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. Advances in neural information processing systems, 30, 2017.

Z. Wang, J. J. Hunt, and M. Zhou. Diffusion policies as an expressive policy class for offline
reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

G. Williams, A. Aldrich, and E. Theodorou. Model predictive path integral control using covariance
variable importance sampling. arXiv preprint arXiv:1509.01149, 2015.

R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural
networks. Neural computation, 1(2):270–280, 1989.

C. Wu, S. Yin, W. Qi, X. Wang, Z. Tang, and N. Duan. Visual chatgpt: Talking, drawing and editing
with visual foundation models. arXiv preprint arXiv:2303.04671, 2023.

Y. Wu and K. He. Group normalization. In Proceedings of the European conference on computer
vision (ECCV), pages 3–19, 2018.

Y. Wu, G. Tucker, and O. Nachum. Behavior regularized offline reinforcement learning. arXiv
preprint arXiv:1911.11361, 2019.

Q. Zheng, A. Zhang, and A. Grover. Online decision transformer. In International Conference on
Machine Learning, pages 27042–27059. PMLR, 2022.

Q. Zheng, M. Henaff, B. Amos, and A. Grover. Semi-supervised offline reinforcement learning with
action-free trajectories. In ICML, 2023.

B. Zhu, M. Dang, and A. Grover. Scaling pareto-efficient decision making via offline multi-objective
rl. In International Conference on Learning Representations, 2023.

13

Appendices

A Model details of Decision Stacks

In Decision Stacks, we employ a modular approach by utilizing separate models for predicting
observations, rewards, and actions. These models are trained independently using the technique
of teacher forcing [Williams and Zipser, 1989]. This modular design allows us to explore the
architectural flexibility of Decision Stacks and incorporate various inductive biases tailored to each
modality. Below, we provide a description of the models used for each module in our approach:

A.1 Observations models

• Diffusion-based model. We adopt the diffusion process as a conditional generative model
to generate future observations based on current and past observations. Following Decision
Diffuser [Ajay et al., 2022], we employ classifier-free guidance [Ho and Salimans, 2022]
and low-temperature sampling to generate future observations conditioned on goals. With
classifier-free guidance, we first sample xK(τ) from a Gaussian noise and refine it to x0(τ)
with the following procedure in Eq 7 for denoising xk(τ) into xk−1(τ).

ϵ̂ := ϵθ (xk(τ),∅, k) + ω (ϵθ (xk(τ), G, k)− ϵθ (xk(τ),∅, k)) (7)

where G is the goal information. For the observation model, we diffuse over a sequence of
consecutive observations.

τobs =
[
o0 o1 . . . oT

]
(8)

We parameterize the diffusion model as U-Net [Ajay et al., 2022, Janner et al., 2022]. To
generate future observations, we use an inpainting strategy where we condition the first
observation in the diffusion sequence as the current observation o0.

• Transformer-based model. The trajectory sequences can also be autoregressively predicted
using a transformer architecture as previously demonstrated in Decision Transformer [Chen
et al., 2021] and Trajectory Transformer [Janner et al., 2021]. In our approach, we employ
a GPT [Radford et al., 2018] model as the underlying transformer architecture. This
transformer-based model is trained by feeding it with a sequence of observations, alongside
the task goal as the conditioning information. To ensure temporal consistency during both
training and testing, we employ causal self-attention masks, enabling the model to predict
the next observation solely based on the preceding observations and task information. To
effectively represent the observation and task modalities, we treat them as separate entities
and embed them into dedicated tokens. These tokens are then input to the transformer,
which is further enriched with positional encoding to capture the temporal relationships
among the observations. This combination of a GPT model, self-attention masks, and
modality-specific token embeddings allows our approach to effectively model the sequential
nature of the observations while incorporating task-related information. The transformer
can autoregressively generate a sequence of observations as in Eq 8.

A.2 Reward models

• Diffusion-based model. For our reward model, we employ a similar U-Net architecture
as the observation diffusion model but diffuse over different sequences. Specifically, we
diffuse over the combined sequence of observations and rewards as follows:

τrew =

[
o0 o1 . . . oT
r0 r1 . . . rT

]
(9)

In this combined sequence, we concatenate the observation sequence o0, o1, ..., oT and the
corresponding reward sequence r0, r1, ..., rT at each time step for training. To generate
the reward sequence, we utilize an inpainting conditioning strategy, similar to the one used
in the observation model. This strategy involves conditioning the diffusion process on the
observation sequences o0, o1, ..., oT while generating the rewards. By incorporating this
inpainting conditioning, the reward model can effectively utilize the available observation
information to generate accurate reward predictions throughout the diffusion process.

14

• Transformer-based model. We employ an Encoder-Decoder transformer architecture
for reward sequence generation, given a sequence of observations and the task goal. The
encoder module embeds the observations and task goal, incorporating time encoding for
capturing temporal dependencies. The encoded inputs are then processed by a transformer
layer. The decoder module generates the reward sequence by iteratively predicting the next
reward based on the encoded inputs and previously generated rewards. The transformer
architecture facilitates capturing long-range dependencies and effectively modeling the
dynamics between observations and rewards.

• MLP reward model. The multi-layer perceptron (MLP) reward model is a straightforward
mapping from the current observation to the corresponding immediate reward. This model
does not incorporate context or future synthesized information as it relies on a fixed input
and output size. Consequently, the MLP architecture does not consider or incorporate any
contextual information during its prediction process.

A.3 Action models

• Diffusion-based model. Similar to the observation and reward diffusion processes, we
perform diffusion over the trajectory defined in Equation 10 as well as goal conditioning.
By employing diffusion in this manner, we generate the action sequence conditioned on
the information contained within the previous observations, rewards, and anticipated future
observations and rewards. This diffusion process enables us to effectively capture the
dependencies and dynamics among these elements, resulting in the generation of contextually
informed action sequences.

τact =

 o0 o1 . . . oT
r0 r1 . . . rT
a0 a1 . . . aT

 (10)

• Transformer-based model. We employ the Encoder-Decoder transformer architecture,
similar to that utilized in the reward transformer model, for our action model. The encoder
module performs embedding of the observations, rewards, and task goals, incorporating
time encodings to capture temporal dependencies. The encoded inputs are subsequently
processed by a transformer layer. The decoder module is responsible for generating the
action sequence by iteratively predicting the subsequent action based on the encoded inputs
and previously generated actions. Consequently, our action model produces coherent and
contextually informed action sequences.

• MLP action model. The multi-layer perceptron (MLP) action model functions as a direct
mapping from the current observation and subsequent observation to the corresponding
immediate action, similar to the inverse dynamics model in Decision Diffuser [Ajay et al.,
2022]. However, due to its fixed input and output size, this MLP architecture does not
incorporate contextual or future synthesized information. Consequently, the model lacks the
ability to consider or integrate contextual details. This limitation proves disadvantageous
in the context of partially observable Markov decision processes (POMDPs), where the
inclusion of contextual information is vital for inferring hidden states and making informed
decisions.

B Hyperparameters and training details

• The diffusion-based observation model follows the same training hyperparameters as in
Decision Diffuser [Ajay et al., 2022], where we set the number of diffusion steps as 200 and
the planning horizon as 100.

• For other models, we use a batch size of 32, a learning rate of 3e−4, and training steps of
2e6 with Adam optimizer [Kingma and Ba, 2015].

• The MLP action model and the MLP reward model is a two layered MLP with 512 hidden
units and ReLU activations.

• The diffusion models’ noise model backbone is a U-Net with six repeated residual blocks.
Each block consists of two temporal convolutions, each followed by group norm [Wu and
He, 2018], and a final Mish nonlinearity [Misra, 2019].

15

• For Maze2D experiments, different mazes require different average episode steps to reach
to target, we use the planning horizon of 180 for umaze, 256 for medium-maze and 300 for
large maze.

• For Maze2D experiments, we use the warm-starting strategy where we perform a reduced
number of forward diffusion steps using a previously generated plan as in Diffuser [Janner
et al., 2022] to speed up the computation.

• The training of all three models, including the observation, action, and reward models, is
conducted using the teacher-forcing technique [Williams and Zipser, 1989].

• Additional hyperparameters can be found in the configuration files within our codebase.
• Upon reproducing the Decision Diffuser (DD) approach [Ajay et al., 2022] using their

provided codebase, we observed that the agent performance can be sensitive to the test
return of the locomotion tasks, conditional guidance parameter, and sampling noise. For
Decision Stacks variants that use the DD observation model, we directly use the models
tuned for DD’s best performance. In future work, it can be helpful to use conservative
regularizers [Nguyen et al., 2022] to further improve both DD and DS performance.

• Each model was trained on a single NVIDIA A5000 GPU.

C Sensitivity analysis on the dimension occlusion for POMDPs.

Table 7: Sensitivity Analysis on Occluded Dimensions for POMDPs. In the Hopper environment,
the full state contains 5 dimensions of position data and 6 dimensions of velocity data of different
joints. The table below illustrates experiments with various dimensions and semantics for occlusion.
DS consistently exhibits superior or second-best performance in comparison to other baselines on the
hopper-medium-expert-v2 dataset. The standard error is reported, and the results are averaged over
15 random seeds.

Occluded Dimension BC DT TT DD Diffuser DS (ours)

Occlude first 2 dim of velocity 43.3± 2.2 59.0± 2.3 68.7± 8.3 52.3± 5.5 52.5± 7.4 68.0 ± 3.4
Occlude middle 2 dim of velocity 34.0± 0.9 73.1± 4.6 76.7± 7.9 31.6± 5.14 24.2± 3.1 81.1 ± 6.9
Occlude last 2 dim of velocity 51.1± 1.3 105.2± 1.0 61.6± 3.3 32.7± 2.4 70.7± 4.7 110.9 ± 0.4
Occlude first 2 dim of position 14.6± 2.4 40.4 ± 3.2 15.0± 4.1 8.7± 0.2 29.5± 1.7 38.9± 6.2

Average 35.7± 1.7 69.4± 2.8 55.5± 5.9 31.3± 3.3 44.2± 4.2 74.7 ± 4.2

D Ablation of reward modeling across MDP and POMDP.

We performed an ablation study on reward modeling, focusing on six locomotion environments. We
trained two sets of transformer-based action models: one set modeling the sequence of observations
and actions, and the other set incorporating the sequence of observations, rewards, and actions. The
evaluation of these models was conducted on both Markov Decision Process (MDP) and Partially
Observable Markov Decision Process (POMDP) environments, specifically three locomotion tasks.
The results obtained from this study highlight the evident advantages of reward modeling, particularly
in dense-reward locomotion tasks. The details and findings are presented in the Table 8, emphasizing
the benefits gained from incorporating reward modeling.

16

Table 8: Ablation on reward modeling.

Environments
Action models

Transformer with reward modelling Transformer without reward modelling

MDP
Hopper-medium-v2 76.6 ±4.2 69.7 ±3.4

Walker2d-medium-v2 83.6 ±0.3 82.7 ±1.2

Halfcheetah-medium-v2 47.8 ±0.4 43.0 ±2.8

Average (MDP envs) 69.3 65.1

POMDP
Hopper-medium-v2 56.0 ±3.5 43.6 ±1.3

Walker2d-medium-v2 74.3 ±4.2 54.2 ±7.3

Halfcheetah-medium-v2 47.1 ±0.3 46.5 ±0.7

Average (POMDP envs) 59.1 48.1

Average (All envs) 64.2 56.6

E Modeling ordering ablation study

Table 9: Performance Comparison on Modeling Ordering. From the chain rule of probability, any
autoregressive factorization can model the data distribution under idealized conditions. In practice,
we choose the ordering of observations, rewards, and actions. Specifically, we ordered observations
prior to rewards to be consistent with the functional definitions in MDPs, where the reward is
typically a function of observations (and potentially other variables), but not vice versa. We tested this
choice empirically as well in early experiments, and found our choice to significantly outperform the
counterpart. The table provides a comparison of two different orderings: Reward-State-Action (R, S,
A) and State-Reward-Action (S, R, A). The results indicate that the S, R, A ordering outperforms the
R, S, A ordering in the halfcheetah-medium-replay-v2 environment. DS models observations prior
to rewards to be consistent with the functional definitions in MDPs, where the reward is typically a
function of observations (and potentially other variables), but not vice versa.

Ordering halfcheetah-medium-replay-v2 Performance

R, S, A 32.1± 0.1

S, R, A 41.1 ± 0.1

F Maze2D additional analysis

We investigate trajectory sampling-based methods, namely DD, Diffuser, and Decision Stacks, within
this specific environment. All three models utilize a diffusion-based approach to generate future
plans. In this task with goal-conditioning, the position of the maze’s goal serves as the condition.

Regarding Diffuser, we strictly adhere to their codebase and observed that Diffuser impaints the last
goal position into the diffusion sequence. Similarly, for DD, we follow their codebase and incorporate
the goal as conditioning, embedding it and transmitting it to the diffusion backbone, which is an
Unet. In the case of DD, we also apply inpainting conditioning by conditioning the last position in
the diffusion sequence to serve as the goal position.

F.1 Detour problem of inpainting conditioning

However, we encountered an issue with this inpainting goal conditioning when performing open-loop
generation. The problem arises because, during each replanning iteration of the diffusion model, it
only conditions on the last time step to be the goal state. Consequently, when the agent is in close
proximity to the goal point, the diffusion model plans a detour that initially takes the agent away
from the goal and then redirects it back towards the goal. Since the environment’s reward function is
designed in such a way that the agent receives a reward when it is near the goal, and the episode does

17

not terminate upon reaching the goal point but rather when it reaches the maximum episode length, it
is actually more advantageous for the agent to remain at the goal point.

After recognizing this issue, we devised a "progressive conditioning" (PC) strategy to address it. This
approach involves gradually increasing the number of timesteps in the diffusion sequence that are
conditioned to be the goal position as time progresses. By implementing this progressive conditioning
method, we successfully resolve the detour problem and provide additional incentives for the agents
to remain at the goal position. Without PC, the agent’s behavior during open-loop evaluation exhibits
a recurring pattern of moving toward the goal and deviating from it. This results in unfavorable
trajectories where the agent fails to stay at the goal position.

The integration of progressive conditioning led to performance enhancement in both Diffuser and DD,
although the overall results still indicate that Decision Stacks outperforms DD in both single goal
(average performance: 109.8 vs. 131.5) and multi goal environments (average performance: 111.6 vs.
123.4). We compare the performance of Diffuser, DD, DS with and without progressive conditioning
in the bar charts below in Figure 4 and Figure 5. The results indicate that DS with PC outperforms
other baselines on most of the environment settings across single-goal and multi-goal settings.

Figure 4: Bar chart comparison of Diffuser, DD and DS with and without progressive conditioning in
the single goal setting of Maze2D.

Figure 5: Bar chart comparison of Diffuser, DD and DS with and without progressive conditioning in
the multi goal setting of Maze2D.

18

	Introduction
	Preliminaries
	Goal conditioned POMDPs
	Offline reinforcement learning
	Generative models: Autoregressive transformers and Diffusion models

	Flexible and Modular RL via Decision Stacks
	Experiments
	Long-Horizon Goal-Conditioned Environments
	Offline Reinforcement Learning Performance in MDPs
	Offline Reinforcement Learning Performance in POMDPs
	Architectural Flexibility and Compositional Generalization

	Related works
	Conclusion
	Model details of Decision Stacks
	Observations models
	Reward models
	Action models

	Hyperparameters and training details
	Sensitivity analysis on the dimension occlusion for POMDPs.
	Ablation of reward modeling across MDP and POMDP.
	Modeling ordering ablation study
	Maze2D additional analysis
	Detour problem of inpainting conditioning

