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Abstract

Riemannian diffusion models draw inspiration from standard Euclidean space1

diffusion models to learn distributions on general manifolds. Unfortunately, the2

additional geometric complexity renders the diffusion transition term inexpressible3

in closed form, so prior methods resort to imprecise approximations of the score4

matching training objective that degrade performance and preclude applications5

in high dimensions. In this work, we reexamine these approximations and pro-6

pose several practical improvements. Our key observation is that most relevant7

manifolds are symmetric spaces, which are much more amenable to computation.8

By leveraging and combining various ansätze, we can quickly compute relevant9

quantities to high precision. On low dimensional datasets, our correction produces10

a noticeable improvement and is competitive with other techniques. Addition-11

ally, we show that our method enables us to scale to high dimensional tasks on12

nontrivial manifolds, including SU(n) lattices in the context of lattice quantum13

chromodynamics (QCD). Finally, we apply our models to contrastively learned14

hyperspherical embeddings, curbing the representation collapse problem in the15

projection head and closing the gap between theory and practice.16

1 Introduction17

By learning to faithfully capture high-dimensional probability distributions, modern deep generative18

models have transformed countless fields such as computer vision [19] and natural language pro-19

cessing [42]. However, these models are built primarily for geometrically simple data spaces, such20

as Euclidean space for images and discrete space for text. For many applications such as protein21

structure prediction [13], contrastive learning [12], and high energy physics [6], the support of the22

data distribution is instead a Riemannian manifold such as the sphere or torus. Here, naïvely applying23

a standard generative model on the ambient results in poor performance as it doesn’t incorporate the24

geometric inductive bias and can suffer from singularities [7].25

As such, a longstanding goal within Geometric Deep Learning has been the development of prin-26

cipled, general, and scalable generative models on manifolds [8, 18]. One promising method is27

the Riemannian Diffusion Model [4, 25], the natural generalization of standard Euclidean space28

score-based diffusion models [47, 49]. These learn to reverse a diffusion process on a manifold–in29

particular, the heat equation–through Riemannian score matching methods. While this approach is30

principled and general, it is not scalable. In particular, the additional geometric complexity renders31

the denoising score matching loss intractable. Because of this, previous work resorts to inaccurate32

approximations or sliced score matching [48], but these degrade performance and can’t be scaled to33

high dimensions. We emphasize that this fundamental problem causes Riemannian Diffusion Models34

to fail for even trivial distributions on high dimensional manifolds, which limits their applicability to35

relatively simple low-dimensional examples.36

In our work, we propose several improvements to Riemannian Diffusion Models to stabilize their37

performance and enable scaling to high dimensions. In particular, we reexamine the heat kernel [21],38
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which is the core building block for the denoising score matching objective. To enable denoising39

score matching, one needs to be able to sample from and compute the gradient of the logarithm of the40

heat kernel efficiently. This can be done trivially in Euclidean space as the heat kernel is a Gaussian41

distribution, but doing this is effectively intractable for general manifolds. By restricting our analysis42

to Riemannian symmetric spaces [9, 29], which are a class of a manifold with a special symmetry43

structure, we can make substantial improvements. We leverage this additional structure to quickly44

and precisely compute heat kernel quantities, allowing us to scale up Riemannian Diffusion Models45

to high dimensional real-world tasks. Furthermore, since almost all manifolds that practitioners work46

with are (or are diffeomorphic to) Riemannian symmetric spaces, our improvements are generalizable47

and not task-specific. Concretely our contributions are:48

• We present a generalized strategy for numerically computing the heat kernel on49

Riemannian symmetric spaces in the context of denoising score matching. In particular,50

we adapt known heat kernel techniques to our more specific problem, allowing us to quickly,51

accurately, and stably train with denoising score matching.52

• We show how to exactly sample from the heat kernel using our quick computations53

above. In particular, we show how our exact heat kernel computation enables fast simulation54

free techniques on simple manifolds. Furthermore, we develop a sampling method based on55

the probability flow ODE and show that this can be quickly computed with standard ODE56

solvers on the maximal torus of the manifold.57

• We empirically demonstrate that our improved Riemannian Diffusion Models improve58

performance and scale to high dimensional real world tasks. For example, we can59

faithfully learn Wilson action on 4 × 4 SU(3) lattices (128 dimensions). Furthermore,60

when applied to contrastively learned hyperspherical embeddings (127 dimensions), our61

method enables better model interpretability by recovering the collapsed projection head62

representations. To the best of our knowledge, this is the first example where differential63

equation-based manifold generative models have scaled to real world tasks with hundreds of64

dimensions.65

2 Background66

2.1 Diffusion Models67

Diffusion models on Rd are defined through stochastic differential equations [24, 46, 49]. Given68

an initial data distribution p0 on Rd, samples x0 ∼ Rd are perturbed with a stochastic differential69

equation[33]70

dxt = f(xt, t)dt+ g(t)dBt (1)
where f and g are fixed drift and diffusion coefficients, respectively. The time varying distributions71

pt (defined by xt) evolves according to the Fokker-Planck Equation72

∂

∂t
pt(x) = −div(pt(x)f(x, t)) +

g(t)2

2
∆xpt(x) (2)

and approaches a limiting distribution pT , which is normally a simple distribution like a Gaussian73

N (0, σ2
T I) through carefully chosen f and g. Our SDE has a corresponding reversed SDE74

dxt = (f(xt, t)− g(t)2∇x log pt(xt))dt+ g(t)dBt (3)

which maps pT back to p0. Diffusion models approximate the score function ∇x log pt(x) using a75

neural network sθ(x, t). To do this, one minimizes the score matching loss [27], which is weighted76

by constants λt:77

EtExt∼ptλt ∥sθ(xt, t)−∇x log pt(xt)∥2 (4)
Since this loss is intractable due to the unknown ∇x log pt(xt), we instead use an alternative form of78

the loss. One such loss is the implicit score matching loss[27]:79

Et,xt∼pt
λt

[
div(sθ)(xt, t) +

1

2
∥sθ(xt, t)∥2

]
(5)

which normally is estimated using sliced score matching/Hutchinson’s trace estimator[26, 48]:80

Et,ϵ,xt∼ptλt

[
ϵ⊤Dxsθ(xt, t)ϵ+

1

2
∥sθ(xt, t)∥2

]
(6)
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where ϵ is drawn over some 0 mean and identity covariance distribution like the standard normal81

distribution or the Rademacher distribution. Unfortunately, the added variance from the divergence82

computation normally renders this loss unworkable in high dimensions[47], so practitioners instead83

use the denoising score matching loss[51]84

Et,x0∼p0,xt∼pt(·|x0)λt ∥sθ(xt, t)−∇x log pt(xt|x0)∥2 (7)

where pt(xt|x0) is derived from the SDE in Equation 1 and is normally tractable. Once sθ(xt, t) is85

learned, we can construct a generative model by first sampling xT ∼ pT and solving the generative86

SDE from t = T to t = 0:87

dxt = (f(xt, t)− g2(t)sθ(xt, t))dt+ g(t)dBt (8)

Furthermore, there exists a corresponding “probability flow ODE” [49]88

dxt = (f(xt, t)−
g(t)2

2
∇x log pt(xt))dt (9)

that has the same evolution of pt as the SDE in Equation 1. This can be approximated using our score89

network sθ to get a Neural ODE [11]90

dxt = (f(xt, t)−
g(t)2

2
sθ(xt, t)dt (10)

which can be used to evaluate exact likelihoods of the data [20].91

2.2 Riemannian Diffusion Models92

To generalize diffusion models to d-dimensional Riemannian manifolds M, which we assume to93

be compact, connected, and isometrically embedded in Euclidean space, one adapts the existing94

machinery to the geometrically more complex space [4]. Riemannian manifolds are deeply analytic95

constructs, so Euclidean space operations like vector fields v, gradients ∇, and Brownian motion96

Bt have natural (in the categorical sense) analogues on M. This allows one to mostly port over the97

diffusion model machinery from Euclidean space. Here, we highlight some of the core differences.98

The forward SDE is the heat equation. The particle dynamics follow a Brownian motion:99

dxt = dBt (11)

which can easily be rescaled by time
∫ t

0
g(t)ds given a time schedule g(t) (though this is omitted100

for clarity purposes). Unlike the Euclidean case, here pt is stationary and approaches the uniform101

distribution UM as t → ∞ (in practice, this convergence is fast, getting within numerical precision102

for t ≈ 5).103

The transition density has no closed form. Despite the fact that we work with the most simple104

SDE, the transition kernel defined by the manifold heat equation pt(xt|x0) has no closed form. This105

transition kernel is known as the heat kernel, which satisfies Equation 2 with the additional condition106

that, as t → 0, the kernel approaches δx0
. We will denote this by KM(xt|x0, t), and we highlight107

that, when M is Rd, this corresponds to a Gaussian and is easy to work with.108

This has several major consequences which cause prior to work to favor sliced score matching over109

denoising score matching. First, to sample a point x ∼ KM(·|x0, t), one must simulate a Geodesic110

Random Walk111

xt+∆t = expx(
√
∆tz) z ∼ N (0, Id) ∈ TxM (12)

where exp is the Riemannian exponential map. Additionally, to calculate KM(·|x0, t) or112

∇ logKM(x|x0, t), one must truncate the eigenfunction representation113

KEF
M (x|x0, t) =

∞∑
i=0

e−λitfi(x0)fi(x) (13)

Here, fi, λi are the discrete eigenfunctions/eigenvalues of the Laplacian ∆fi = −λifi and form114

an orthonormal basis for all L2 functions on M. Previous work has also explored the use of the115

Varadhan approximation for small values of t (which uses the Riemannian logarithmic map) [44]:116

KM(x|x0, t) ≈ N (0,
√
2t)(distM(x0, x)) =⇒ ∇x logKM(x|x0, t) ≈

1

2t
logx(x0) (14)
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3 Method117

The key problem with applying denoising score matching in practice is that the heat kernel computa-118

tion is too expensive and inaccurate. For example, simulating a geodesic random walk is expensive119

since it requires many exponential maps. Furthermore, the eigenfunction expansion in Equation 13120

requires increasingly more eigenfunctions as t → 0 (numbering in the tens of thousands). Worse121

still, their formulas are not well-known for most manifolds, and, even when explicit formulas exist,122

they can be numerically unstable (like in the case of Sn). One possible way to alleviate this is to use123

Varadhan’s approximation for small t, but this is also unreliable except for very small t.124

To remedy this issue, we instead consider the case of Riemannian symmetric spaces [22]. We125

emphasize that most manifold generative modeling applications already model on Riemannian126

Symmetric Spaces like the sphere, torus, or Lie Groups, so we do not lose applicability by restricting127

our attention here. Furthermore, for surfaces (which have appeared as generative modeling test tasks128

in the literature [43]), one can always define a generative model by mapping the data points to S2,129

learning a generative model there, and mapping back [14]. We empathize that, outside of these two130

examples, we are unaware of any other manifolds which have been used for Riemannian generative131

modeling tasks.132

3.1 Heat Kernels on Riemannian Symmetric Spaces133

In this section, we will define Riemannian Symmetric Spaces and showcase relationships with the134

heat kernel. We empathize that our exposition is neither rigorous nor fully defines all terms. We urge135

interested readers to consult a book [22] or monograph [9] for a full treatment of the subject.136

Definition 3.1. A Riemannian Symmetric Space is a Riemannian manifold such that, for all points137

x ∈ M, there exists a local isometry s s.t. s(x) = x and Dxs = −idTxM.138

This symmetry property is relatively simple but has numerous ramifications. In particular, we can139

characterize all Riemannian symmetric spaces as a quotient G/K where G is a Lie Group and K is a140

compact isotropy group.141

Examples. This includes many well known manifolds, such as Lie Groups G ∼= G/{e} (where142

{e} is the trivial Lie Group), the sphere Sn ∼= SO(n + 1)/SO(n), and hyperbolic space Hn ∼=143

SO(n, 1)/O(n).144

In our paper, we do not consider the case of noncompact Riemannian symmetric spaces, as these are145

diffeomorphic to Euclidean space. As such, we can reapply the same generative modeling trick that146

we used for surfaces: map data points to Rn, learn a standard diffusion model there, and map back.147

On symmetric spaces, one can define a special structure called the maximal torus which is critical for148

our analysis. Intuitively, the maximal torus parameterizes the symmetries of the space.149

Definition 3.2 (Maximal Torus). A torus on a Lie group is any compact, connected, and abelian150

subgroup of G. These are isomorphic to standard tori Tm ∼= (S1)m. A maximal torus T is a torus151

which is not contained in any other torus. All maximal tori are conjugate. Symmetric spaces inherit152

maximal tori from their quotient space G.153

Examples. For the Lie group of unitary matrix U(n), the maximal torus is defined as T =154

{diag(eiθ1 , . . . , eiθn) : θk ∈ [0, 2π)}. For the sphere Sn, a maximal torus is any great circle.155

We write R+ as the set of all the positive roots of our symmetric spaces (these are values on the156

maximal torus), and for a root α we let mα be the multiplicity (e.g. for spheres, α is 1 and mα is157

d− 1). Furthermore, for a point x, we let h be the “flat” coordinates of x on the maximal torus (e.g.158

for spheres h is the angle between x and an anchor point x0). Then, we can rewrite the heat kernel in159

terms of the maximal torus:160

Proposition 3.3 (Heat Kernel Reduces on Maximal Torus). The Laplace-Beltrami operator on M161

(the manifold generalization of the standard Laplacian) induces the “radial” Laplacian on T :162

Lr = ∆T +
∑

α∈R+

mα cot(α · h) ∂

∂α
(15)

where ∆T is the standard Laplacian on the torus. As such, the heat kernel reduces to a function of h.163
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3.2 Improved Heat Kernel Estimation164

We now use the fact that the heat kernel is intimately connected with the maximal torus to better165

estimate the heat kernel values. This greatly improves the speed and fidelity of our numerical166

evaluation during training.167

3.2.1 Eigenfunction Expansion Restricted to the Maximal Torus168

We note that the maximal torus relationship in Proposition 3.3 reduces the eigenfunction expansion169

in Equation 13 to an eigenfunction expansion of the induced Laplacian on the maximal torus. This170

has implicitly appeared in previous work when defining Riemannian Diffusion Models on S2 and171

SO(3) [4, 34], allowing one to rewrite the summation as, respectively172

KS2(x|x0, t) =
1

4π

∞∑
l=0

(2l + 1)Pl(⟨x, x0⟩)e−l(l+1)t (16)

where Pl are the Legendre Polynomials and173

KSO(3)(x|x0, t) =
1

8π2

∞∑
l=0

e−2l(l+1)t sin(2l + 1)θ/2

sin(θ/2)
θ is the angle between x, x0 (17)

By making this relationship explicit, we can draw upon similar formulas for other symmetric spaces,174

e.g. the hypersphere [39]175

KSn(x|x0, t) =
1

V (Sn)

∞∑
l=0

2l + n− 1

n− 1
G

(n−1)/2
l (⟨x, x0⟩)e−l(l+d−1)t (18)

where Gα
l are the Gegenbauer polynomials and V (Sn) is the volume of Sn. The new summation176

works by effectively “collapsing” the summation for eigenfunctions fi with the same eigenvalue177

λi. This drastically reduces the number of computations required from O(MdimM) to O(MdimT ),178

where M is the cutoff value. Furthermore, this also tends to greatly simplify the explicit formula. As179

an example, for Sn this reduces the computation from O(Mn) to O(M) (since we no longer need180

to evaluate O(i) eigenfunctions for each eigenvalue λi) and avoids the computation of numerically181

unstable hyperspherical harmonics.182

3.2.2 Controlling Small Time Errors183

While the torus eigenfunction representation greatly reduces the computational cost (particularly184

for several higher-dimensional manifolds), they still require thousands of eigenfunctions for small185

values of t. Worse still, numerical error persists: for small values of t, computing the eigenfunction186

expansion can easily cause overflow errors that even double precision can’t resolve. To this end, we187

examine several refined versions of the Varadhan approximation that use the fact that the manifold188

is a Riemannian symmetric space. These approximations can allow us to control the number of189

eigenfunctions required and, in some cases, completely obviate the need for them altogether.190

The Schwinger-Dewitt Approximation191

The Varadhan approximation is built by approximating the heat kernel with a Gaussian distribution192

with respect to the Riemannian distance function. However, doing this does not account for the193

curvature of the manifold. By accounting for this curvature, we derive the Schwinger-Dewitt194

approximation [9]:195

KSD
M (x|x0, t) =

∆x0
(x)1/2e−

dM(x0,x)2

4t + tR
6

(4πt)dimM/2
(19)

Here ∆x0
(x) = det(Dx0

expx0
(logx0

(x))) is the (unnormalized) change of volume term introduced196

by the exponential map, and R is the scalar curvature of the manifold. Generally, this is much more197

stable than Varadhan’s approximation as it better accounts for the curvature of the manifold, retaining198

accuracy up to moderate time values.199

∆ appears to be a rather computationally demanding term. Indeed, naïve calculations require the200

formation of the full Jacobian matrix and a determinant computation, which scales poorly with201
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dimensions and is completely inaccessible in higher dimensions. However, we again emphasize the202

fact that we are working with symmetric spaces; here, ∆ has a particularly simple formula defined by203

our flat coordinate h from above:204

∆x0(x) =
∏

α∈R+

(
α · h

sin(α · h)

)mα

(20)

Sum Over Paths205

The fact that we can derive a better approximation using a different power of ∆ points to deeper206

connections between the heat kernel and the “Gaussian” with respect to distance. We draw inspiration207

from several Euclidean case examples, such as the flat torus [28] or the unit interval [36]. For these208

cases, the heat kernel is derived by summing a Gaussian over all possible paths connecting x0 and x.209

While this formula does not exactly lift over to Riemannian symmetric spaces, there exists a facsimile210

for Lie Groups [9]:211

KSOP
M (x|x0, t) =

etρ
2

(4πt)dimM/2

∑
2πn∈Γ

∏
α∈R+

(
α · (h+ 2πn)

2 sin(α · h/2)

)
e−

(h+2πn)2

4t (21)

Here, Γ is the set of all points in the tangent space to the identity which exponentiate back to the212

source point (e.g. in spheres this is all distances which integral multiples of 2π), and ρ2 is a manifold213

specific constant. We note that the product over R+ is exactly the ∆ change in variables above since214

mα = 1, but we simply extend this to every other root.215

Generally, this formula is rather powerful as it gives us an exact (albeit infinite) representation for the216

heat kernel. Compared to the eigenfunction expansion in Equation 13, the Sum Over Paths represen-217

tation is accurate for small t, which nicely complements the fact that the eigenfunction representation218

is accurate for large t. This formula does generalize to split-rank Riemannian symmetric spaces like219

odd dimensional spheres. However, we did not pursue these formulas further since the formulas are220

much more complex due to the appearance of intertwining operators.221

3.2.3 A Unified Heat Kernel Estimator222

We unify these approximants into a single heat kernel estimator. Our computation method splits223

up the heat kernel evaluation based on time steps, and applies an eigenfunction summation or an224

improved small time approximation accordingly. This allows us to effectively control the errors at225

both the small and large time steps while significantly reducing the number of function evaluations.226

Our full algorithm is outlined in Algorithm 1.227

Algorithm 1: Heat Kernel Computation
Hyperparameters: Riemannian symmetric space M, number of eigenfunctions ne, time value
cutoff τ , (optional, depending on if M is a Lie Group) number of paths np

Input: source x0, time t, query value x
Compute
if t < τ then

if M is a Lie Group then
return KSOP

M (x|x0, t) truncated to |n| < np in the summation over Γ.
else

return KSD
M (x|x0, t).

end
else

return KEF
M (x|x0, t) truncated to |n| < ne.

end

228

We can compute ∇x logKM using conventional autodifferentiation tools. As this is the score quantity229

used for training, we ablate the accuracy of our various heat kernel approximations in Figure 1 for230

S2, S127, and SO(3). In general, we found that computing with standard eigenfunctions was too231

costly and too prone to numerical blowup, and Varadhan’s approximation was simply too inaccurate.232

In particular, for S127, preexisting methods would not work since KEF
M NaNs out before Varadhan233

becomes accurate.234
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(a) S2 (b) S127 (c) SO(3)

Figure 1: We compare the various heat kernel estimators on a variety of manifolds. We plot
the relative error compared with t. Our improved small time asymptotics allow us to control the
numerical error, while baseline Varadhan is insufficient. For S127, Varadhan will still produce an
error of 10% when the eigenfunction expansion NaNs out, so we need to use Schwinger-Dewitt

3.3 Exact Heat Kernel Sampling235

To train with the denoising score matching objective, one must produce heat kernel samples to236

optimize with. Typically, Riemannian Diffusion Models sample by discretizing a Brownian motion237

through a geodesic random walk. However, this can be slow as it requires taking many computationally238

expensive exponential map steps on M and can drift off the manifold due to compounding numerical239

error. In this section, we discuss strategies to sample from the heat kernel quickly and exactly.240

Cheap Rejection Sampling Methods241

Using our cheap heat kernel evaluations, we can sample using rejection sampling. The key detail242

is the prior distribution, which needs to be cheap to evaluate, easy to sample from, and must not243

deviate from the heat kernel too much. For large time steps t the natural prior distribution is uniform.244

Conversely, for small time steps, we instead use the wrapped Gaussian distribution, which can be245

sampled by passing a tangent space Gaussian through the exponential map and has a density246

pwrap(x|x0, t) =
1

(4πt)dimM/2

∑
2πn∈Γ

∏
α∈R+

(
sin(α · h)

α · (h+ 2πn)

)
e−

(h+2πn)2

4t (22)

Heat Kernel ODE Sampling247

We notice that we can apply the probability flow ODE to sample from the heat kernel exactly. In248

particular, we draw a sample xT ∼ UM, where T is large enough s.t. KM(·|x0, T ) is (numerically)249

uniform, and solve the ODE d
dsxT = − 1

2∇x logKM(xs|x0, s) from s = T to s = t. By the same250

construction as the probability flow ODE, this is guaranteed to produce samples from KM(·|x0, t).251

This is solvable as a manifold ODE, as previous works have already developed adaptive manifold252

ODE solvers [37]. Furthermore, by Proposition 3.3, we can restrict our vector field to the maximal253

torus and solve it there. Note that this allows us to use preexisting Euclidean space solvers since254

the torus is effectively Euclidean space. Lastly, we can scale the time schedule of the ODE (with a255

scheme like a variance-exploding schedule) to stabilize the numerical values.256

4 Related Work257

Our work exists in the established framework of differential equation-based Riemannian generative258

models. Early methods generalized Neural ODEs to manifolds[15, 37, 38], enabling training with259

maximal likelihood. More recent methods attempt to remove the simulation components[3, 43], but260

this results in unscalable or biased objectives. We instead work with diffusion models, which are261

based on scores and SDEs and do not have any of these issues. In particular, we aim to resolve the262

main gap that prevents Riemannian Diffusion Models from scaling to high dimensions.263
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(a) t = 0 FM Path. (b) t = 0.5 FM Path. (c) Diffusion SM path. (d) Closeup of Figure 2c

Figure 2: We visualize the vector fields generated by the flow matching geodesic path and our
score matching diffusion path. These are done on S1. (a) The flow matching path has a discontinuity
at the pole. (b) The marginal densities of the flow matching path are not smooth and transition sharply
at the boundary. (c) Our score matching path has a smooth density and smooth vectors. (d) At the
pole, our score matching path anneals to 0 to maintain continuity.

Method Volcano Earthquake Flood Fire
Sliced Score Matching -4.92 ± 0.25 -0.19 ± 0.07 0.45 ± 0.17 -1.33 ± 0.06

Denoising Score Matching (inaccurate) -1.28 ± 0.28 0.13 ± 0.03 0.73 ± 0.04 -0.60 ± 0.18

Denoising Score Matching (accurate) -4.69 ± 0.29 -0.27 ± 0.05 0.44 ± 0.03 -1.51 ± 0.13

Table 1: We measure the improvement of our improved heat kernel estimator on downstream
climate science tasks and report negative log likelihood (↓). Without our accurate heat kernel
estimator, the denoising score matching loss produces substandard results.

Riemannian Flow Matching (RFM) [10] is a very recent work that attempts to achieve similar goals264

(i.e. scaling to high dimensions) by generalizing flow matching to Riemannian manifolds [35]. The265

fundamental difficulty is that one must design smooth vector fields that flows from a base distribution266

(ie the uniform distribution) to a data point. RFM introduces several geodesic-based vector fields, but267

these break the smoothness assumption and the theoretical framework (see Figure 2). We found that,268

although RFM is able to easily learn relatively simple distributions, this non-smoothness is highly269

detrimental for more nontrivial densities and can be crippling in high dimensions (see Figure 3).270

We also note that, similar to the Euclidean case, RFM with the diffusion path corresponds to score271

matching with the probability flow ODE, so our work provides a computation for this path.272

5 Experiments273

5.1 Simple Test Tasks274

We start by comparing our accurate denoising score matching objective with the inaccurate version275

suggested by [4] based on 50 eigenfunctions. We test on the compiled Earth science datasets from [38],276

detailing results are in Table 1. Generally, our accurate heat kernel results in a substantial improvement277

and matches sliced score matching. Note that we do not expect our method to outperform sliced score278

matching since these datasets are low dimensional.279

We also compare directly with RFMs on a series of increasingly complex checkerboard datasets on280

the flat torus. These datasets have appeared in prior work to measure model quality [3, 5, 37]. As a281

result of the non-smooth vector field dynamics, we find that RFMs degrade in performance as the282

checkerboard increases in complexity, and is unable to learn past a certain point. Our visualized283

results are given in Figure 3.284

5.2 Learning the Wilson Action on SU(3) Lattices.285

We apply our method to learn SU(3) configurations on a 4× 4 lattice. In particular, we generate data286

on SU(3)4×4 according to the Wilson Action [53] p(K) ∝ e−S(K), where S(K) is defined as:287

S(K) = −β

3

∑
x,y∈Z2

4

Re tr(Kx,yKx+1,yK
∗
x+1,y+1K

∗
x,y+1) (23)
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Figure 3: We compare Riemannian score matching and flow matching on increasingly complex
checkerboard patterns on the torus. On simple checkerboards, Flow matching learns suboptimal
distributions with noticeable artifacts like blurriness and spurious peaks, and fails for more complex
checkerboards. Conversely, Riemannian score matching/diffusion learns accurate densities.

Method SVHN Places365 LSUN iSUN Texture
SSD+[45] 31.19 77.74 79.39 80.85 66.63
KNN+[50] 39.23 80.74 48.99 74.99 57.15
CIDER (penultimate layer) 23.09 79.63 16.16 71.68 43.87
CIDER (hypersphere) 93.53 89.92 93.68 89.92 92.41
CIDER (hypersphere) + Diffusion 28.95 76.54 35.78 74.17 62.87

Table 2: We compare contrastive learning OOD detection methods on CIFAR-100. We report
false positive rates (↓) for 0.05 false negative rate. The hyperspherical embeddings produce very bad
results, but with a Riemannian Diffusion Model, it is competitive with or surpass the state of the art.

We take β = 9 for our purposes. Our model trains stably and can learn the density, achieving an ESS288

of 0.62. This is not the standard variational inference training procedure [6], since it requires samples289

to train with, but concurrent work has shown that this type of training can be coupled with diffusion290

guidance to improve variational inference methods [17]. As such, our model has the potential to291

improve SU(n) lattice QCD samplers, although we leave this task for future work. We also note that292

our model can likely be further improved by building data symmetries into the score network [30].293

5.3 Contrastively Learned Hyperspherical Embeddings294

Finally, we examine contrastively learning [12]. Standard contrastive losses optimize embeddings295

of the data that lie on the hypersphere. Paradoxically, these embeddings are unsuitable for most296

downstream tasks, so practitioners instead use the penultimate layer [2]. This degrades interpretability,297

since the theoretical analyses in this field work on the hyperspherical embeddings [52].298

We investigate this issue further in the context of out of distribution (OOD) detection. We use the299

pretrained embedding network from CIDER[40]. Using the hyperspherical representation for OOD300

detection produces very bad results. However, using likelihoods from our Riemannian Diffusion301

Model stabilizes performance and achieves comparable results with other penultimate feature-based302

methods (see Figure 2). We emphasize that the embedding network has been tuned to optimize the303

performance using the penultimate layer. Since our established theory exclusively focuses on the304

properties of the hyperspherical embedding, the fact that our Riemannian Diffusion Models can305

extract a comparable representation can lead to more principled improvements for future work.306

6 Conclusion307

We have introduced several practical improvements for Riemannian Diffusion Models that leverage the308

fact that most relevant manifolds are Riemannian symmetric spaces. Our improved capabilities allow309

us, for the first time, to scale differential equation manifold models to hundreds of dimensions, where310

we showcase applications in lattice QCD and constrastive learning. We hope that our improvements311

help open the door to the broader adoption of Riemannian generative modeling techniques.312
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A Explicit Heat Kernel Formulas424

In this section, we highlight the formulas we used for computing the heat kernel.425

Torus. The Torus Tn ∼= (S1)n can be realized as a flat torus [0, 2π)n, where each coordinate426

represents the angular component. Under this construction, we can compute the kernel for each427

coordinate in S1 ∼= [0, 2π) and then take the product. The eigenfunction expansion is428

KS1(y|x, t) = 1

π

(
1

2
+

∞∑
k=1

e−k2t(cos(kx) cos(ky) + sin(kx) sin(ky)

)
(24)

The heat kernel also admits a sum over paths representation. In particular, this agrees with the429

wrapped probability since the change of volume term is 1:430

KS1(y|x, t) = 1√
4πt

∞∑
k=−∞

e−
(y−x+2πk)2

4t (25)

Spheres. The sphere Sn is the set {x ∈ Rn+1 : ∥x∥ = 1}. We use the formulas (eigenfunction and431

Schwinger-Dewitt) given in the main text, noting that the maximal torus value can be extracted with432

the equation θ = arccos(x · y) (ie the geodesic distance).433

SO(3). SO(3) is the Lie Group {X ∈ R3×3 : XX⊤ = I, det(X) = 1}. We have already given the434

eigenfunction expansion in the main text, but the sum over paths method can be derived from the fact435

that the maximal torus value θ is the distance between x and y on the manifold.436

SU(3). SU(3) is the (real) Lie Group {X ∈ C3×3 : XXH = I, det(X) = 1}. The eigenfunction437

expansion can be derived from the character classes [16], and the sum over paths representation can438

be derived directly [1].439

B Experimental Details440

B.1 Heat Kernel Estimates441

We sample a random point (based off of the heat kernel probability) for each time step to compute.442

S2. We use 10000 eigenfunctions for the ground truth and 10 for our comparison.443

S127. We use 50000 eigenfunctions evaluated at double precision for our ground truth and 100 for444

our comparison.445

SO(3). We use 10000 eigenfunctions for our ground truth and 50 for our comparison. We sum over446

10 paths.447

B.2 Earth Science Datasets448

We do not perform a full hyperparameter search. We use a very similar architecture to the one used in449

Bortoli et al. [4] except we use the SiLU activation function without a learnable parameter [23] and a450

learning rate of 5e− 4.451

B.3 2D Torus452

We use a standard MLP with 4 hidden layers and the SiLU activation function and learn with the Adam453

optimizer with learning rate set to 1e−3 [31]. However, we transform the input x → sin(kx), cos(kx)454

where k ranges from 1 to 6. This was done to ensure that the input respects the boundary constraints.455

We note that this architecture is generally quite powerful, as the Fourier coefficients can capture finer456

grain features, but this was optimized for the flow matching baseline. In particular, score matching457

works with significantly fewer Fourier coefficients. We train for 100000 gradient updates with a458

batch size of 100 (each batch is randomly sampled from the checkerboard).459
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B.4 SU(3) Lattice460

We generate our 20000 ground truth samples using Riemannian Langevin dynamics with a step size461

of 1e− 3 for 10000 update iterations. Our model is similar to the model used in Kingma et al. [32],462

except we circular pad the convnet and use 3 layers for each up-down block instead. We input a463

compressed version of the 3× 3 SU(n) matrix, making the input size 18. We train with a learning464

rate of 5e− 4 and perform 1000000 updates with a batch size of 512. To evaluate, we use an 0.999465

exponential moving average [41] and sample using the manifold ODE sampler [37].466

B.5 Contrastive Learning467

We use the pretrained networks given by Ming et al. [40] to construct our hyperspherical embeddings.468

Our Riemannian diffusion model is similar to the simplex diffusion model given by [36], although469

we use 3 layers instead of 4. We train using the Adam optimizer with a learning rate of 5e − 4,470

performing a 0.999 EMA before using the manifold ODE solver to evaluate likelihoods.471
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