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Abstract

We consider the class of noisy multi-layered sigmoid recurrent neural networks1

with w (unbounded) weights for classification of sequences of length T , where2

independent noise distributed according to N (0, σ2) is added to the output of each3

neuron in the network. Our main result shows that the sample complexity of PAC4

learning this class can be bounded by O(w log(T/σ)). For the non-noisy version5

of the same class (i.e., σ = 0), we prove a lower bound of Ω(wT ) for the sample6

complexity. Our results indicate an exponential gap in the dependence of sample7

complexity on T for noisy versus non-noisy networks. Moreover, given the mild8

logarithmic dependence of the upper bound on 1/σ, this gap still holds even for9

numerically negligible values of σ.10

1 Introduction11

Recurrent Neural Networks (RNNs) are effective tools for processing sequential data. They are used12

in numerous applications such as speech recognition (Graves et al., 2013), computer vision (Karpathy13

and Fei-Fei, 2015), translation (Sutskever et al., 2014), modeling dynamical systems (Hardt et al.,14

2018) and time series (Qin et al., 2017). Recurrent models allow us to design classes of predictors15

that can be applied to (i.e., take input values from) sequences of arbitrary length. For processing a16

sequence of T elements, a predictor f (e.g., a neural network) “consumes” the input elements one by17

one, generating an output at each step. This output is then used in the next step (as another input to f18

along with the next element in the input sequence). Defining recurrent models formally takes some19

effort, and we relegate it to the next sections. In short, the function f is (recursively) applied T times20

in order to generate the ultimate outcome.21

Let us fix a base class Fw of all multi-layered feed-forward sigmoid neural networks with w weights.22

We can create a recurrent version of this class, which we will denote by REC[Fw, T ], for classifying23

sequences of length T . One can study the sample complexity of PAC learning REC[Fw, T ] with24

respect to different loss functions. Koiran and Sontag (1998) studied the binary-valued version of this25

class by applying a threshold function at the end, and proved a lower bound of Ω(wT ) for its VC26

dimension.27

There has also been efforts for proving upper bounds on the sample complexity of PAC learning28

REC[F , T ] for various base classes F and different loss functions. Given the above lower bound, a29

gold standard has been achieving a linear dependence on T in the upper bound. Koiran and Sontag30

(1998) proved an upper bound of O(w4T 2) on the VC dimension of REC[Fw, T ] discussed above.31

More recent papers have considered the more realistic setting of classification with continuous-valued32

RNNs, e.g., by removing the threshold function and using a bounded Lipschitz surrogate loss. In this33
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setting, Zhang et al. (2018) proved an upper bound of Õ(T 4w∥W∥O(T )) on the sample complexity134

where ∥W∥ is the spectral norm of the network. Chen et al. (2020) improved over this result by35

proving an upper bound of Õ(Tw∥W∥2 min{
√
w, ∥W∥O(T )}). These bounds get close to the gold36

standard when the spectral norm of the network satisfies ∥W∥ ≤ 1.37

The above upper bounds are proved by simply “unfolding” the recurrence, effectively substituting the38

recurrent class REC[Fw, T ] with the (larger) class of T -fold compositions Fw ◦ Fw . . . ◦ Fw. These39

unfolding techniques do not exploit the fact that the function f (that is applied recursively for T steps40

to compute the output of the network) is fixed across all the T steps. Consequently, the resulting41

sample complexity has (super-)linear dependence on T . Therefore, we would need a prohibitively42

large sample size for training recurrent models for classifying very long sequences. Nevertheless, this43

dependence is inevitable in light of the of lower bound of Koiran and Sontag (1998). Or is it?44

In this paper, we consider a related class of noisy recurrent neural networks, REC[F̃σ
w, T ]. The45

hypotheses in this class are similar to those in REC[Fw, T ], except that outputs of (sigmoid) activa-46

tion functions are added with independent Gaussian random variables, N (0, σ2). Our main result47

demonstrates that, remarkably, the noisy class can be learned with a number of samples that is only48

logarithmic with respect to T .49

Theorem 1 (Informal version of Theorem 15). The sample complexity of PAC learning the class50

REC[F̃σ
w, T ] of noisy recurrent networks with respect to ramp loss is Õ(w log(T/σ)).51

One challenge of proving the above theorem is that the analysis involves dealing with random52

hypotheses. Therefore, unlike the usual arguments that bound the covering number of a set of53

deterministic maps with respect to the ℓ2 distance, we study the covering number of a class of random54

maps with respect to the total variation distance. We then invoke some of the recently developed tools55

in Fathollah Pour and Ashtiani (2022) for bounding these covering numbers. Another challenge is56

deviating from the usual “unfolding method” and exploiting the fact that in recurrent models a fixed57

function/network is applied recursively.58

The mere fact that learning REC[F̃σ
w, T ] requires less samples compared to its non-noisy counterpart59

is not entirely unexpected. For classification of long sequences, however, the sample complexity60

gap is quite drastic (i.e., exponential). We argue that a logarithmic dependency on T is actually61

more realistic in practical situations: for finite precision machines, one can effectively break the62

Ω(T ) barrier even for non-noisy networks. To see this, let us choose σ to be a numerically negligible63

number (e.g., smaller than the numerical precision of our computing device). In this case, the class of64

noisy and non-noisy networks become effectively the same when implemented on a device with finite65

numerical precision. But then our upper bound shows a mild logarithmic dependence on 1/σ.66

One caveat in the above argument is that the lower bound of Koiran and Sontag (1998) is proved67

for the 0-1 loss and perhaps not directly comparable to the setting of the upper bound which uses a68

Lipcshitz surrogate loss. We address this by showing a comparable lower bound in the same setting.69

Theorem 2 (Informal version of Theorem 10). The sample complexity of PAC learning REC[Fw, T ]70

with ramp loss is Ω (wT ).71

In the next section we introduce our notations and define the PAC learning problem. We state the72

lower bound in Section 3, and the upper bound in Section 5. Sections 6, 7, and 8 provide a high-level73

proof of our upper bound.74

Additional Related Work. Due to space constraints, we postpone the discussion of some additional75

related work to Appendix A.76

2 Preliminaries77

2.1 Notations78

∥x∥1, ∥x∥2, and ∥x∥∞ denote the ℓ1, ℓ2, and ℓ∞ norms of a vector x ∈ Rd respectively. We denote79

the cardinality of a set S by |S|. The set of natural numbers smaller or equal to m is represented by80

[m]. A vector of all zeros is denoted by 00d = [0 . . . 0]
⊤ ∈ Rd. We use X ⊆ Rd as a domain set. We81

1Ignoring the dependence of the sample complexity on the accuracy and confidence parameters.
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will study classes of vector-valued functions; a hypothesis is a Borel function f : Rd → Rp, and a82

hypothesis class F is a set of such hypotheses.83

We find it useful to have an explicit notation—here an overline—for the random versions of the above84

definitions: X is the set of all random variables defined over X that admit a generalized density85

function2. x ∈ X is a random variable in this set. To simplify this notation, we sometimes just write86

x ∈ Rd rather than x ∈ Rd.87

y = f(x) is the random variable associated with pushforward of x under Borel map f : Rd → Rp.88

We use f : Rd → Rp to indicate that the mapping itself is random. Random hypotheses can be89

applied to both random and non-random inputs—e.g., f(x) and f(x)3. A class of random hypotheses90

is denoted by F .91

Definition 3 (Composition of Two Hypothesis Classes). We denote by h ◦ f the function h(f(x))92

(assuming the range of f and the domain of h are compatible). The composition of two hypothesis93

classes F and H is defined by H ◦F = {h ◦ f | h ∈ H, f ∈ F}. Composition of classes of random94

hypotheses is defined similarly by H ◦ F = {h ◦ f | h ∈ H, f ∈ F}.95

2.2 Feedforward neural networks96

We will first define some classes associated with feedforward neural networks. Let ϕ(x) = 1
1+e−x − 1

297

be the centered sigmoid function. Φ : Rp → [−1/2, 1/2]
p is the element-wise sigmoid activation98

function defined by Φ((x(1), . . . , x(p))) = (ϕ(x(1)), . . . , ϕ(x(p))).99

Definition 4 (Single-Layer Sigmoid Neural Networks). The class of single-layer sigmoid neural100

networks with d inputs and p outputs is defined by NET[d, p] = {fW : Rd → [−1/2, 1/2]p |101

fW (x) = Φ(W⊤x),W ∈ Rd×p}.102

Based on Definition 4, we can define the class of multi-layer (feedforward) neural networks (with w103

weights) as a composition of several single-layer networks. Note that the number of hidden neurons104

can be arbitrary as long as the total number of weights/parameters is w.105

Definition 5 (Multi-Layer Sigmoid Neural Networks). A class of multi-layer sigmoid networks with106

p0 inputs, pk outputs, and w weights that take inputs in [−1/2, 1/2]p0 is defined by107

MNET[p0, pk, w] =
⋃

NET[pk−1, pk] ◦ . . . ◦ NET[p0, p1]

where union is taken over all choices of (p1, p2, . . . , pk−1) ∈ Nk−1 that satisfy
∑k

i=1 pi.pi−1 = w.108

We say MNET[p0, pk, w] is well-defined if the union is not empty.109

Well-definedness basically means that p0, pk, and w are compatible. For simplicity, in the above110

definition we restricted the input domain to [−1/2, 1/2]d. This will help in defining the recurrent111

versions of these networks (since the input and output domains become compatible). However, our112

analysis can be easily extended to capture any bounded domain (e.g., [−B,B]d).113

2.3 Recursive application of a function and recurrent models114

In this section we define REC[F , T ] which is the recurrent version of class F for sequences of115

length T . Let v = (a1, . . . , am) ∈ Xm for m ∈ N. We define First (v) = (a1, . . . , am−1) ∈ Xm−1116

and Last (v) = am ∈ X as functions that return the first m − 1 and the last dimensions of the117

vector v, respectively. Let u(0), u(1), . . . , u(T−1) be a sequence of inputs, where u(i) ∈ Rp, and let118

f : Rs → Rq be a hypothesis/mapping. In the context of recurrent models, it is useful to define the119

recurrent application of f on this sequence. Note that out of the q dimensions of the range of f , q − 1120

of them are recurrent and therefore are fed back to the model. Basically, fR (U, t) will be the result121

of applying f on the first t elements of U (with recurrent feedback).122

Definition 6 (Recurrent Application of a Function). Let U =
[
u(0) . . . u(i) . . . u(T−1)

]
∈ Rp×T be a123

sequence of inputs of length T , where u(i) ∈ Rp denotes the i-th column of U for 0 ≤ i ≤ T − 1.124

2Both discrete (by using Dirac delta function) and absolutely continuous random variables admit a generalized
density function.

3Technically, we consider f(x) to be f(δx), where δx is a random variable with Dirac delta measure on x.
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Figure 1: An example of a recurrent model in REC[F , T ]. The first q− 1 dimensions of fR(U, t− 1)
is concatenated with u(t) to form the input at time t. The last dimension of fR(U, T − 1) is taken to
be the final output of the recurrent model.

Let f be a (random) function from Rs to Rq, where s = p + q − 1. Moreover, define fR (U, 0) =125

f
([

00q−1 u(0)
]⊤)

. Then, for any 1 ≤ t ≤ T − 1, the recursive application of f is denoted by126

fR : Rp×T × [T − 1] → Rq and is defined as fR (U, t) = f
([

First
(
fR (U, t− 1)

)
u(t)
]⊤)

.127

Now we are ready to define the (recurrent) hypothesis class REC[F , T ]. Each hypothesis in this class128

takes a sequence U of input vectors, and applies a function f ∈ F recurrently on the elements of this129

sequence. The final output will be a real number. We give the formal definition in the following; also130

see Figure 1 for a visualization.131

Definition 7 (Recurrent Class). Let s, p, q ∈ N such that s = p+ q− 1. Let F be a class of functions
from Rs to Rq . The class of recurrent models with length T that use functions in F (which we denote
by recurring class) as their recurring block is defined by

REC[F , T ] = {h : Rp×T → R | h(U) = Last
(
fR (U, T − 1)

)
, f ∈ F}

For example, REC[MNET[p0, pk, w], T ] is the class of (real-valued) recurrent neural networks with132

length T that use MNET[p0, pk, w] as their recurring block. We say that REC[MNET[p0, pk, w], T ]133

is well-defined if MNET[p0, pk, w] is well-defined and also the input/output dimensions are compati-134

ble (i.e., p0 ≥ pk).135

2.4 PAC learning with ramp loss136

In this section we formulate the PAC learning model for classification with respect to the ramp loss.137

The use of ramp loss is natural for classification (see e.g., Boucheron et al. (2005); Bartlett et al.138

(2006)) and the main features of the ramp loss that we are going to exploit are boundedness and139

Lipschitzness. We start by introducing the ramp loss.140

Definition 8 (Ramp Loss). Let f : X → R be a hypothesis and let D be a distribution over X × Y .141

Let (x, y) ∈ X × Y , where Y = {−1, 1}. The ramp loss of f with respect to margin parameter142

γ > 0 is defined as lγ(f, x, y) = rγ (−f(x).y), where rγ is the ramp function defined by143

rγ(x) =


0 x < −γ,

1 + x
γ −γ ≤ x ≤ 0

1 x ≥ 0.

Definition 9 (Agnostic PAC Learning with Respect to Ramp Loss). We say that a hypothesis class F144

of functions from X to R is agnostic PAC learnable with respect to ramp loss with margin parameter145

γ > 0 if there exists a learner A and a function m : (0, 1)2 → N with the following property: For146

every distribution D over X × {−1, 1} and every ϵ, δ ∈ (0, 1), if S is a set of m(ϵ, δ) i.i.d. samples147

from D, then with probability at least 1− δ (over the randomness of S) we have148

E(x,y)∼D [lγ (A(S), x, y)] ≤ inf
f∈F

E(x,y)∼D [lγ (A(S), x, y)] + ϵ.

The sample complexity of PAC learning F with respect to ramp loss is denoted by mF (ϵ, δ), which is149

the minimum number of samples required for learning F (among all learners A). The definition of150
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agnostic PAC learning with respect to ramp loss works for any value of γ and when we are analyzing151

the sample complexity we consider it to be a fixed constant.152

3 A lower bound for sample complexity of learning recurrent neural networks153

In this section, we consider the sample complexity of PAC learning sigmoid recurrent neural networks154

with respect to ramp loss. Particularly, we state a lower bound on the sample complexity of the155

class REC[MNET[p0, pk, w], T ] of all sigmoid recurrent neural networks with length T that use156

multi-layer neural networks with w weights as their recurring block. The main message is that this157

sample complexity grows at least linearly with T .158

Theorem 10 (Sample Complexity Lower Bound for Recurrent Neural Networks). For every T ≥ 3159

and w ≥ 19 there exists a well-defined class Hw = REC[MNET[p0, pk, w], T ] and a universal160

constant C > 0 such that for every ϵ, δ ∈ (0, 1/40) we have161

mHw
(ϵ, δ) ≥ C.

(
wT + log(1/δ)

ϵ2

)
.

The proof of the above lower bound is based on a similar result due to Sontag et al. (1998). However,162

the argument in Sontag et al. (1998) is for PAC learning with respect to 0-1 loss. To extend this result163

for the ramp loss, we construct a binary-valued class Fw = {f : f(U) = sign(h(U)), h ∈ Hw}164

where sign (x) = 1 if x ≥ 0 and sign (x) = −1 if x < 0. We prove that every function f ∈ Fw can165

be related to another function h ∈ Hw such that the ramp loss of h is almost equal to the zero-one166

loss of f . This is formalized in the following lemma, which is a key result in proving Theorem 10.167

The proof of Theorem 10 and Lemma 11 can be found in Appendix C.168

Lemma 11. Let Hw = REC[MNET[p0, pk, w], T ] be a well-defined class and let Fw = {f :169

[−1/2, 1/2]p×T → {−1, 1} | f(U) = sign (h(U)), h ∈ Hw}. Then, for every distribution D over170

[−1/2, 1/2]p×T × {−1, 1}, η > 0, and every function f ∈ Fw there exists a function h ∈ Hw such171

that E(U,y)∼D [lγ (h, U, y)] ≤ E(U,y)∼D
[
l0−1 (f, U, y)

]
+ η where l0−1(f, U, y) = 11 {f(U) ̸= y}.172

4 Noisy recurrent neural networks173

In this section, we will define classes of noisy recurrent neural networks. Let us first define the174

singleton Gaussian noise class, which contains a single additive Gaussian noise function.175

Definition 12 (The Gaussian Noise Class). The d-dimensional noise class with scale σ ≥ 0 is176

denoted by Gσ,d = {gσ,d}. Here, gσ,d : Rd → Rd is a random function defined by gσ,d(x) = x+ z,177

where z ∼ N (0, σ2Id). When it is clear from the context we drop d and write Gσ = {gσ}.178

The following is the noisy version of multi-layer networks in Definition 5. Basically, Gaussian noise179

is composed (Definition 3) before each layer.180

Definition 13 (Noisy Multi-Layer Sigmoid Neural Networks). The class of all noisy multi-layer181

sigmoid networks with w weights that take values in [−1/2, 1/2]p0 as input and output values in182

[−1/2, 1/2]pk is defined by183

MNETσ[p0, pk, w] =
⋃

NET[pk−1, pk] ◦ . . . ◦ Gσ ◦ NET[p1, p2] ◦ Gσ ◦ NET[p0, p1] ◦ Gσ,

where σ ≥ 0 is scale of the Gaussian noise and the union is taken over all choices of184

(p1, p2, . . . , pk−1) ∈ Nk−1 that satisfy
∑k

i=1 pi.pi−1 = w.185

Similar to the deterministic case, MNETσ[p0, pk, w] is said to be well-defined if the union is not186

empty (i.e., p0, pk and w are compatible). We can use Definition 7 to create recurrent versions187

of the above class. For example, REC[MNETσ[p0, pk, w], T ] is a class of recurrent (and random)188

hypotheses for sequence of length T that use MNETσ[p0, pk, w] as their recurring block. Again,189

similar to the deterministic case, we say REC[MNETσ[p0, pk, w], T ] is well-defined if p0, pk and w190

are compatible and MNETσ[p0, pk, w] is well-defined.191
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5 PAC learning noisy recurrent neural networks192

In section 3, we established an Ω(T ) lower bound on the sample complexity of learning recurrent193

networks (i.e., REC[MNET[p0, pk, w], T ]). In this section, we consider a related class (based on194

noisy recurrent neural networks) and show that the dependence of sample complexity on T is only195

O(log T ). In particular, Gσ ◦ REC[MNETσ[p0, pk, w], T ] can be regarded as a (noisy) sibling of196

REC[MNET[p0, pk, w], T ]. Since it is more standard to define PAC learnability for deterministic197

hypotheses, we define the deterministic version of the above class by derandomization4.198

Definition 14 (Derandomization by Expectation). Let F be a class of (random) functions from Rp×T199

to Rq . The derandomization of a function class F by expectation is defined as E(F) = {h : Rp×T →200

Rq | h (u) = Ef

[
f (u)

]
, f ∈ F}.201

We show that, contrary to Theorem 10, the sample complexity of PAC learning the (derandomized)202

class of noisy recurrent neural networks, E(Gσ ◦ REC[MNETσ[p0, pk, w], T ]), grows at most loga-203

rithmically with T while it still enjoys the same linear dependence on w. This is formalized in the204

following theorem (see Appendix D for a proof).205

Theorem 15 (Main Result). Let Qw = Gσ ◦ REC[MNETσ[p0, pk, w], T ] be any well-defined class206

and assume T ∈ N, 0 < σ < 1, ϵ, δ ∈ (0, 1). Then the sample complexity of learning Hw = E(Qw)207

is upper bounded by208

mHw(ϵ, δ) = O

(
w log

(
wT
ϵσ log

(
wT
ϵσ

))
+ log (1/δ)

ϵ2

)
= Õ

(
w log

(
T
σ

)
+ log(1/δ)

ϵ2

)
,

where Õ hides logarithmic factors.209

One feature of the above theorem is the mild logarithmic dependence on 1/σ. Therefore, we can take210

σ to be numerically negligible and still get a significantly smaller sample complexity compared to211

the deterministic case for large T . Note that adding such small values of noise would not change the212

empirical outcome of RNNs on finite precision computers.213

The milder (logarithmic) dependency on T is achieved by a novel analysis that involves bounding214

the covering number of noisy recurrent networks with respect to the total variation distance. Also,215

instead of “unfolding” the network, we exploit the fact that the same function/hypothesis is being216

used recurrently. We also want to emphasize that the above bound does not depend on the norms of217

weights of the network. Achieving this is challenging, since a little bit of noise in a previous layer218

can change the output of the next layer drastically. The next few sections are dedicated to give a219

high-level proof of this theorem.220

6 Covering numbers: the classical view221

One of the main tools to derive sample complexity bounds for learning a class of functions is studying222

their covering numbers. In this section we formalize this classic tool.223

Definition 16 (Covering Number). Let (X , ρ) be a metric space. A set A ⊂ X is ϵ-covered by a set224

C ⊆ A with respect to ρ, if for all a ∈ A there exists c ∈ C such that ρ(a, c) ≤ ϵ. We denote by225

N(ϵ, A, ρ) the cardinality of the smallest set C that ϵ-covers A and we refer to is as the ϵ-covering226

number of A with respect to metric ρ.227

The notion of covering number is defined with respect to a metric ρ. We now give the definition of228

extended metrics, which we will use to define uniform covering numbers. The extended metrics can229

be seen as measures of distance between two hypotheses on a given input set.230

Definition 17 (Extended Metrics). Let (X , ρ) be a metric space. Let u = (a1, . . . , am), v =231

(b1, . . . , bm) ∈ Xm for m ∈ N. The ∞-extended and ℓ2-extended metrics over Xm are defined by232

ρ∞,m(u, v) = sup1≤i≤m ρ(ai, bi) and ρℓ2,m(u, v) =
√

1
m

∑m
i=1(ρ(ai, bi))

2, respectively. We drop233

m and use ρ∞ or ρℓ2 if it is clear from the context.234

4One can also define PAC learnability for a class of random hypotheses and get a similar result without
taking the expectation. However, working with a deterministic class helps to contrast the result with that of
Theorem 10.
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A useful property about extended metrics is that the ∞-extended metric always upper bounds the235

ℓ2-extended metric, i.e., ρℓ2(u, v) ≤ ρ∞(u, v) for all u, v ∈ X . Based on the above definition of236

extended metrics, we define the uniform covering number of a hypothesis class with respect to ∥.∥2.237

Definition 18 (Uniform Covering Number with Respect to ∥.∥2). Let F be a hypothesis class of238

functions from X to Y . For a set of inputs S = {x1, x2, . . . , xm} ⊆ X , we define the restriction239

of F to S as F|S = {(f(x1), f(x2), . . . , f(xm)) : f ∈ F} ⊆ Ym. The uniform ϵ-covering240

numbers of hypothesis class F with respect to ∥.∥∞2 , ∥.∥ℓ22 are denoted by NU (ϵ,F ,m, ∥.∥∞2 ) and241

NU (ϵ,F ,m, ∥.∥ℓ22 ) and are the maximum values of N(ϵ,F|S , ∥.∥∞,m
2 ) and N(ϵ,F|S , ∥.∥ℓ2,m2 ) over242

all S ⊆ X with |S| = m, respectively.243

The following theorem connects the notion of uniform covering number with PAC learning. It244

converts a bound on the ∥.∥ℓ22 uniform covering number of a hypothesis class to a bound on the245

sample complexity of PAC learning the class; see Appendix E for a more detailed discussion.246

Theorem 19. Let F be a class of functions from X to R. Then there exists an algorithm A with the247

following property: For every distribution D over X × {−1, 1} and every ϵ, δ ∈ (0, 1), if S is a set248

of m i.i.d. samples from D, then with probability at least 1− δ (over the randomness of S),249

E(x,y)∼D [lγ (A(S), x, y)]

≤ inf
f∈F

E(x,y)∼D [lγ (f, x, y)] + 16ϵ+
24√
m

√
lnNU (γϵ,F ,m, ∥.∥ℓ22 ) + 6

√
ln(2/δ)

2m
.

Moreover, the algorithm that returns the function with the minimum error on S satisfies the above250

property (i.e., Algorithm A such that A(S) = argminf∈F
1
|S|
∑

(x,y)∈S lγ (f, x, y)).251

7 Total variation covers for random hypotheses252

One idea to prove a generalization bound for noisy neural networks is to bound their covering numbers.253

However, noisy neural networks are random functions, and therefore their behaviours on a sample set254

cannot be directly compared. Instead, one can compare the output distributions of a random function255

on two sample sets. We therefore use the recently developed tools from Fathollah Pour and Ashtiani256

(2022) to define and study covering numbers for random hypotheses. These covering numbers are257

defined based on metrics between distributions. Specifically, our analysis is based on the notion of258

uniform covering number with respect to total variation distance.259

Definition 20 (Total Variation Distance). Let µ and ν denote two probability measures over X and260

let Ω be the Borel sigma-algebra over X . The TV distance between µ and ν is defined by261

dTV (µ, ν) = sup
B∈Ω

|µ(B)− ν(B)|.

Furthermore, if µ and ν have densities f and g then262

dTV (µ, ν) = sup
B∈Ω

∣∣∣ ∫
B

(f(x)− g(x))dx
∣∣∣ = 1

2

∫
X
|f(x)− g(x)| dx =

1

2
∥f − g∥1.

For two random variables x and y with probability measures µ and ν we sometimes abuse the263

notation and write dTV (x, y) instead of dTV (µ, ν). For example, we write dTV (f1(x), f2(x)) in264

order to refer to the Total Variation (TV) distance between pushforwards of x under mappings f1 and265

f2. We also write d∞,m
TV

((
f1(x1), . . . , f1(xm)

)
,
(
f2(x1), . . . , f2(xm)

))
to refer to the extended TV266

distance between mappings of the set S = {x1, . . . , xm} by f1 and f2. We use the extended total267

variation distance to define the uniform covering number for classes of random hypotheses.268

Definition 21 (Uniform Covering Number for Classes of Random Hypotheses). Let F be a class269

of random hypotheses from X to Y . For a set of random variables S = {x1, x2, . . . , xm} ⊆ X , the270

restriction of F to S is defined as F |S = {(f(x1), f(x2), . . . , f(xm)) : f ∈ F} ⊆ Ym
. Let Γ ⊆ X .271

The uniform ϵ-covering numbers of F with respect to Γ and d∞TV is defined by272

NU (ϵ,F ,m, d∞TV ,Γ) = sup
S⊆Γ,|S|=m

N(ϵ,F |S , d
∞,m
TV ).
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Some hypothesis classes that we analyze (e.g., single-layer noisy neural networks) may have “global”273

total variation covers that do not depend on m. This will be addressed with the following notation:274

NU (ϵ,F ,∞, ρ∞,Γ) = limm→∞ NU (ϵ,F ,m, ρ∞,Γ). The set Γ in Definition 21 is used to define275

the input domain for which we want to find the covering number of a class of random hypotheses.276

For instance, some of the covers that we see are derived with respect to inputs with bounded domain277

or some need the input to be first smoothed by Gaussian noise. In this paper, we will be working with278

the following choices of Γ279

– Γ = Xd and Γ = XB,d: the set of all random variables defined over Rd and [−B,B]d,280

respectively, that admit a generalized density function. For example, we use X0.5,d to281

address the set of random variables in [−1/2, 1/2]d.282

– Γ = ∆p×T = {U | U =
[
δu(0) . . . δu(T−1)

]⊤
, u(i) ∈ Rp} and Γ = ∆B,p×T =283

{U | U =
[
δu(0) . . . δu(T−1)

]⊤
, u(i) ∈ [−B,B]p}, where δu(i) is the random variable284

associated with Dirac delta measure on u(i). Note that ∆B,p×T ⊂ ∆p×T .285

– Γ = Gσ,d ◦ XB,d = {gσ,d(x) | x ∈ XB,d}: all members of XB,d after being “smoothed” by286

adding (convolving the density with) Gaussian noise.287

We mentioned in Section 6 that a bound on the ∥.∥ℓ22 uniform covering number can be connected288

to a bound on sample complexity of PAC learning. We now show that a bound on d∞TV covering289

number of a class of random hypotheses can be turned into a bound on the ∥.∥ℓ22 covering number of290

its derandomized version and, thus, PAC learning it.291

Theorem 22 (∥.∥ℓ22 Cover of E(F) From d∞TV Cover of F (Fathollah Pour and Ashtiani, 2022)). Let292

F be a class of functions from Rp×T to [−B,B]q . Then for every ϵ > 0 and m ∈ N we have293

NU (2Bϵ
√
q, E(F),m, ∥.∥ℓ22 ) ≤ NU (ϵ,F ,m, d∞TV ,∆p×T ) ≤ NU (ϵ,F ,∞, d∞TV ,∆p×T ).

8 Bounding the covering number of recurrent models294

In Section 6, we mentioned that finding a bound on covering number of a hypothesis class is a standard295

approach to bound its sample complexity. In the previous section, we introduced a new notion of296

covering number with respect to total variation distance that was developed by Fathollah Pour and297

Ashtiani (2022). We showed how this notion can be related to PAC learning for classes of random298

hypotheses. In the following, we give an overview of the techniques used to find a bound on the d∞TV299

covering number of the class of noisy recurrent models. We also discuss why this bound results in a300

sample complexity that has a milder logarithmic dependency on T , compared to bounds proved by301

“unfolding” the recurrence and replacing the recurrent model with the T -fold composition.302

One advantage of analyzing the uniform covering number with respect to TV distance is that it303

comes with a useful composition tool. The following theorem basically states that when two classes304

of hypotheses have bounded TV covers, their composition class has a bounded cover too. Note305

that such a result does not hold for the usual definition of covering number (e.g., Definition 18);306

see Fathollah Pour and Ashtiani (2022) for details.307

Theorem 23 (TV Cover for Composition of Random Classes, Lemma 18 of Fathollah Pour and308

Ashtiani (2022)). Let F be a class of random hypotheses from Rd to Rp and H be a class of random309

hypotheses from Rp to Rq. For any ϵ1, ϵ2 > 0 and m ∈ N, denote N1 = NU

(
ϵ1,F ,m, d∞TV ,Xd

)
.310

Then we have,311

NU

(
ϵ1 + ϵ2,H ◦ F ,m, d∞TV ,Xd

)
≤ NU

(
ϵ2,H,mN1, d

∞
TV ,Xp

)
.N1.

An approach to bound the TV uniform covering number of a recurrent model REC[F , T ] is to312

consider it as the T -fold composition F ◦ F . . . ◦ F . One can then use a similar analysis to that313

of Fathollah Pour and Ashtiani (2022) to bound the covering number of the T -fold composition.314

Unfortunately, this approach fails to capture the fact that a fixed function f ∈ F is applied recursively,315

and therefore results in a sample complexity bound that grows at least linearly with T .316

Instead, we take another approach to bound the covering number of recurrent models. Intuitively, we317

notice that any function in the T -fold composite class F ◦ . . . ◦ F = {f1 ◦ . . . ◦ fT | f1, . . . , fT ∈318
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F} is determined by T functions from F . On the other hand, any function in REC[F , T ] =319 {
h | h(U) = Last

(
f
R
(U, T − 1)

)}
is only defined by one function in F and the capacity of this320

class must not be as large as the capacity of F ◦ . . . ◦ F . Interestingly, data processing inequality321

for total variation distance (Lemma 27) suggests that if two functions f and f̂ are “globally” close322

to each other with respect to TV distance (i.e., dTV (f(x), f̂(x)) ≤ ϵ for every x in the domain),323

then dTV (f(f(x)), f̂(f̂(x))) ≤ 2ϵ (i.e., f ◦ f and f̂ ◦ f̂ are also close to each other). By applying324

the data processing inequality recursively, we can see that for the T -fold composition we have325

dTV (f ◦ . . . ◦ f(x), f̂ ◦ . . . ◦ f̂(x)) ≤ ϵT . The above approach results in the following theorem326

which bounds the ϵ-covering number of a noisy recurrent model with respect to TV distance by the327

(ϵ/T )-covering number of its recurring class. Intuitively, this theorem helps us to bound the covering328

number of noisy recurrent models using the bounds obtained for their non-recurrent versions. Here,329

Gaussian noise is added to both the input of the model (i.e., Fσ = F ◦ Gσ) and the output of the330

model (by composing with Gσ).331

Theorem 24 (TV Covering Number of Gσ ◦ REC[Fσ, T ] From Gσ ◦ Fσ). Let s, p, q ∈ N such that332

s = p+ q − 1. Let F be a class of functions from XB,s to XB,q and denote by Fσ = F ◦ Gσ,s the333

class of its composition with noise. Then we have334

NU

(
ϵ,Gσ ◦ REC[Fσ, T ],∞, d∞TV ,∆B,p×T

)
≤ NU

(
ϵ/T,Gσ,q ◦ Fσ,∞, d∞TV ,XB,s

)
.

For using this theorem, one needs to have a finer ϵ/T -cover for the recurring class. As we will see in335

the next section, this will translate into a mild logarithmic sample complexity dependence on T .336

8.1 Covering noisy recurrent networks337

An example of Fσ is the class MNETσ[p0, pk, w] of well-defined noisy multi-layer net-338

works (Definition 13). Theorem 24 suggests that a bound on the covering number of Gσ ◦339

REC[MNETσ[p0, pk, w], T ] can be found from a bound for Gσ ◦ MNETσ[p0, pk, w]. We use the340

following theorem as a bound for the class of single-layer noisy sigmoid networks together with341

theorem 23 to bound the covering number of Gσ ◦MNETσ[p0, pk, w] (see Appendix D, Theorem 38).342

Theorem 25 (A TV Cover for Single-Layer Noisy Neural Networks, Theorem 25 of Fathollah Pour343

and Ashtiani (2022)). For every p, d ∈ N, ϵ > 0, σ < 5d/ϵ we have344

logNU (ϵ,Gσ,p ◦ NET[d, p],∞, d∞TV ,Gσ,d ◦ X0.5,d) ≤ p(d+ 1) log

30
d5/2

√
ln
(
5d−ϵσ

ϵσ

)
ϵ3/2σ2

ln

(
5d

ϵσ

) .

Interestingly, the above bound (on the logarithm of the covering number) is logarithmic with respect345

to 1/ϵ. We will extend this result to multi-layer noisy networks, and then apply Theorem 24 to346

obtain the following bound on the covering number noisy recurrent neural networks. Crucially, the347

dependency (of the logarithm of the covering number) on T is only logarithmic.348

Theorem 26 (A TV Covering Number Bound for Noisy Sigmoid Recurrent Networks). Let T ∈ N.349

For every ϵ, σ ∈ (0, 1) and every well-defined class REC[MNETσ[p0, pk, w], T ] we have350

logNU

(
ϵ,Gσ ◦ REC[MNETσ[p0, pk, w], T ],∞, d∞TV ,∆0.5,p×T

)
= O

(
w log

(
wT

ϵσ
log

(
wT

ϵσ

)))
= Õ

(
w log

(
T

ϵσ

))
.

Finally, we turn the above bound into a ∥.∥ℓ22 covering number bound for the derandomized function351

E
(
Gσ ◦ REC[MNETσ[p0, pk, w], T ]

)
by an application of Theorem 22. We then upper bound the352

sample complexity by the logarithm of covering number (see Theorem 19) and conclude Theorem 15.353

Limitations and future work. Our results are derived for sigmoid (basically bounded, monotone,354

and Lipschitz) activation functions. It is open whether such results can be proved for unbounded355

activation functions such as RELU. Our results are theoretical and we leave empirical evaluations on356

the performance of noisy networks to future work.357
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A More on related work511

There is plethora of work on generalization in neural networks. There are a family of approaches512

that aim to bound the VC-dimension of neural networks. (Baum and Haussler, 1988; Maass, 1994;513

Goldberg and Jerrum, 1995; Vidyasagar, 1997; Sontag et al., 1998; Koiran and Sontag, 1998;514

Bartlett et al., 1998; Bartlett and Maass, 2003; Bartlett et al., 2019). These approaches result in515

generalization bounds that are dependent on the number of parameters. Another family of approaches516

are aimed at obtaining generalization bounds that are dependent on the norms of the weights and517

Lipschitz continuity properties of the network (Bartlett, 1996; Anthony et al., 1999; Zhang, 2002;518

Neyshabur et al., 2015; Bartlett et al., 2017; Neyshabur et al., 2018; Golowich et al., 2018; Arora519

et al., 2018; Nagarajan and Kolter, 2018; Long and Sedghi, 2020). It has been observed that these520

generalization bounds are usually vacuous in practice. One speculation is that the implicit bias521

of gradient descent (Gunasekar et al., 2017; Arora et al., 2019; Ji et al., 2020; Chizat and Bach,522

2020; Ji and Telgarsky, 2021) can lead to benign overfitting (Belkin et al., 2018, 2019; Bartlett et al.,523

2020, 2021). It has also been conjectured that uniform convergence theory may not be able to fully524

capture the performance of neural networks in practice (Nagarajan and Kolter, 2019; Zhang et al.,525

2021). It has been shown that there are data-dependent approaches that can achieve non-vacuouys526

bounds(Dziugaite and Roy, 2017; Zhou et al., 2019; Negrea et al., 2019). There are also other527

approaches that are independent of data (Arora et al., 2018); see Fathollah Pour and Ashtiani (2022)528

for more details.529

Adding different types of noise such as dropout noise (Srivastava et al., 2014), DropConnect (Wan530

et al., 2013), and Denoising AutoEncoders (Vincent et al., 2008) are shown to be helpful in training531

neural networks. Wang et al. (2019) and Gao and Zhou (2016) theoretically analyze the generalization532

under dropout noise. More recently, Fathollah Pour and Ashtiani (2022) developed a framework533

to study the generalization of classes of noisy hypotheses and show that adding noise to the output534

of neurons in a network can be helpful in generalization. Jim et al. (1996) show that additive and535

multiplicative noise can help speed up the convergence of RNNs on local minima surfaces. Recently,536

Lim et al. (2021) showed that noisy RNNs are more stable and robust to input perturbations by537

formalizing the regularization effects of noise.538

Another line of work focuses on the generalization of neural network that are trained with Stochastic539

Gradient Descent (SGD) or its noisy variant Stochastic Gradient Langevin Descent (SGLD) (Russo540

and Zou, 2016; Xu and Raginsky, 2017; Russo and Zou, 2019; Steinke and Zakynthinou, 2020;541

Raginsky et al., 2017; Haghifam et al., 2020; Neu et al., 2021). Zhao et al. (2020) analyze the memory542
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properties of recurrent networks and how well they can remember the input sequence.Tu et al. (2020)543

study the generalization of RNN by analyzing the Fisher-Rao norm of weights, which they obtain544

from the gradients of the network. They offer generalization bounds that can potentially become545

polynomial in T . Allen-Zhu and Li (2019) analyze the change in output through the dynamics of546

training RNNs and prove generalization bounds for recurrent networks that are again polynomial in547

T .548

B Miscellaneous facts549

Lemma 27 (Data Processing Inequality for TV Distance). Given two random variables x1, x2 ∈ X ,550

and a (random) Borel function f : X → Y ,551

dTV (f(x1), f(x2)) ≤ dTV (x1, x2).

Lemma 28. Let x, y ∈ X be two random variables with probability measures µ and ν. Denote552

by Π(µ, ν) the set of all their couplings. Then, there exists π∗ ∈ Π(µ, ν) such that Pπ∗ [x ̸= y] =553

dTV (µ, ν), where the subscript π∗ signals that the probability law is associated with the coupling π∗.554

Moreover, for any coupling π ∈ Π(µ, ν) we have Pπ [x ̸= y] ≥ dTV (µ, ν).555

We use the following two lemmas to reason about the covering number of our recurrent model when556

we take the first dimensions of the output at each time t and when we concatenate new inputs with557

the outputs. The first lemma states that if two random variables are close to each other with respect558

to total variation distance, then they are still close after the applications of the First (.) and Last (.)559

functions.560

Lemma 29 (From TV of Random Variable to TV of First and Last). Let x1, x2 ∈ Rd be two random561

variables. We have562
dTV (First (x1) ,First (x2))) ≤ dTV (x1, x2) ,

dTV (Last (x1) ,Last (x2))) ≤ dTV (x1, x2) .

Proof. We know that First (.) and Last (.) are functions from Rd to Rd−1. Therefore we can apply563

Lemma 27 and conclude the result.564

The next lemma is used to bound the total variation distance between two random variables after565

being concatenated with the input at time t. In that case, we let x1 and x2 in the lemma to be566

First
(
fR (U, t− 1)

)
and First

(
f̂R (U, t− 1)

)
, which are in Xpk−1. We also let y be u(t) ∈ ∆d,567

which is the input at time t.568

Lemma 30 (From TV of Random Variable to TV of Concatenation). Let x1, x2 be random variables569

in Xd. Further, let y a random variable in ∆d. If we have dTV (x1, x2) ≤ ϵ, then570

dTV

(
[x1 y]

⊤
, [x2 y]

⊤
)
≤ ϵ.

Proof. Let y ∈ ∆d be the random variable with Dirac delta measure on y0. From Lemma 28 we571

know that there exists a maximal coupling π∗ of x1 and x2 such that dTV (x1, x2) = Pπ∗ [x1 ̸= x2]572

and denote the density associated with Pπ∗ by f∗. Let γ be a coupling of [x1 y1]
⊤ and [x2 y2]

⊤
573

such that574

f̂
(
[x1 y1]

⊤
, [x2 y2]

⊤
)
=

{
f∗ (x1, x2) y1 = y2 = y0,

0 otherwise.

We can easily verify that γ is a valid coupling. Denote by fx1y the density of the random variable575

[x1 y]
⊤. We know that576

fx1y

(
[x1 y1]

⊤
)
=

{
fx1

(x1) y = y0,

0 otherwise,

where fx1 is the density function of the random variable x1. We can observe that density associated577

with the marginal of γ would be the same as the density of the marginal of π∗ at points where y = y0578

and it is zero otherwise. On the other hand, we know that π∗ is a valid coupling of x1 and x2 and579
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therefore the density of its marginal is fx1 . This concludes that the density of the marginal of γ is580

indeed fx1y . We can show the similar thing for the other marginal, which concludes that γ is a valid581

coupling.582

Therefore, from Lemma 28 we can write that583

dTV

(
[x1 y]

⊤
, [x2 y]

⊤
)
≤ Pγ

[
[x1 y]

⊤ ̸= [x2 y]
⊤
]

≤
∫[

x1

y

]̸
=

[
x2

y

] f̂ ([x1 y]
⊤
, [x2 y]

⊤
)
≤
∫
x1 ̸=x2,
y=y0

f̂
(
[x1 y]

⊤
, [x2 y]

⊤
)

≤
∫
x1 ̸=x2,
y=y0

f∗ (x1, x2) ≤ Pπ∗ [x1 ̸= x2] = dTV (x1, x2) ≤ ϵ.

584

C Proof of lower bound585

In order to prove Theorem 10, we first need to give the definition of PAC Learning with respect to586

0− 1 loss.587

Definition 31 (Agnostic PAC Learning with Respect to 0-1 Loss). We say that a hypothesis class588

F of functions from X to R is agnostic PAC learnable with respect to 0 − 1 loss if there exists a589

learner A and a function m0−1 : (0, 1)2 → N with the following property: For every distribution590

D over X × {−1, 1} and every ϵ, δ ∈ (0, 1), if S is a set of m(ϵ, δ) i.i.d. samples from D, then with591

probability at least 1− δ (over the randomness of S) we have592

E(x,y)∼D

[
l0−1(A(S), x, y)

]
≤ inf

f∈F
E(x,y)∼D

[
l0−1(f, x, y)

]
+ ϵ.

Same as Definition 9, we denote by m0−1
F (ϵ, δ) the sample complexity of PAC learning F with respect593

to 0− 1 loss, which is the minimum number of samples required for learning F among all learners A.594

Before proving Theorem 10, we first prove Lemma 11, which, as mentioned before, is a core part of595

the proof. We state the lemma once more for completeness.596

Lemma 32. Let Hw = REC[MNET[p0, pk, w], T ] be a well-defined class and let Fw = {f :597

[−1/2, 1/2]p×T → {−1, 1} | f(U) = sign (h(U)), h ∈ Hw}. Then, for every distribution D over598

[−1/2, 1/2]p×T × {−1, 1}, η > 0, and every function f ∈ Fw there exists a function h ∈ Hw such599

that E(U,y)∼D [lγ (h, U, y)] ≤ E(U,y)∼D
[
l0−1 (f, U, y)

]
+ η where l0−1(f, U, y) = 11 {f(U) ̸= y}.600

Proof. We know that Hw = {h : Rp×T → [−1/2, 1/2] | h(u) = Last
(
bR (U, T − 1)

)
, b ∈601

MNET[p0, pk, w]}. Similarly, Fw = {f : Rp×T → {−1, 1} | f(u) =602

sign
(
Last

(
bR (U, T − 1)

))
, b ∈ MNET[p0, pk, w]}. Fix a distribution D over [−1/2, 1/2]p×T ×603

{−1, 1}. Define604

z = min
b

argmax
0<x< 1

2

P
[∣∣Last

(
bR(U, T − 1)

)∣∣ ≥ x
]
≥ 1− η,

where the minimum is taken over all well-defined multi-layer neural networks b in MNET[p0, pk, w].605

The last dimension of function b is in [−1/2, 1/2] and, intuitively, z is the largest possible value such606

that P
[
−z < Last

(
bR(U, T − 1)

)
< z
]
< η.607

Let f be any function in Fw and let b = bk−1◦ . . .◦b0 be the k-layer network associated with f where608

bi’s are single-layer sigmoid neural networks, i.e., f(U) = sign
(
Last

(
bR (U, T − 1)

))
. Let Wk−1 =609

[v1 . . . vpk ]
⊤ be the weight matrix associated with bk−1. Denote by Ŵk−1 = [v1 . . . c.vpk ]

⊤
610

the matrix that is exactly the same as Wk−1 but every element in its last row is multiplied by611

c = ϕ−1(γ)/ϕ−1(z). Note that z > 0 and, therefore, ϕ−1(z) > 0. Let b̂k−1 be the single-layer neural612

network that is defined by weight matrix Ŵk−1, i.e., b̂k−1(x) = Φ
(
Ŵ⊤

k−1x
)

. Denote b̂ = b̂k−1 ◦613

. . . ◦ b0 and let h(U) = Last
(
b̂R (U, T − 1)

)
for any U ∈ Rp×T . Clearly, b̂ ∈ MNET[p0, pk, w]614
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and h ∈ Hw. We claim that E(U,y)∼D [lγ (h, U, y)] ≤ E(U,y)∼D
[
l0−1 (f, U, y)

]
+ η. We can write615

the definition of ramp loss as616

E(U,y)∼D [lγ (h, U, y)] = E(U,y)∼D [rγ (−h(U).y)]

= E(U,y)∼D
[
rγ (−h(U).y)

∣∣ |h(U)| ≥ ϕ
(
c.ϕ−1 (z)

)]
.P
[
|h(U)| ≥ ϕ

(
c.ϕ−1 (z)

)]
+ E(U,y)∼D

[
rγ (−h(U).y)

∣∣ |h(U)| < ϕ
(
c.ϕ−1 (z)

)]
.P
[
|h(U)| < ϕ

(
c.ϕ−1 (z)

)]
= E(U,y)∼D [rγ (−h(U).y)| |h(U)| ≥ γ] .P [|h(U)| ≥ γ]

+ E(U,y)∼D [rγ (−h(U).y)| |h(U)| < γ] .P [|h(U)| < γ] ,

(1)

where we used the fact that sigmoid is a monotonic increasing function with a unique inverse and that617

ϕ
(
c.ϕ−1(z)

)
= ϕ

(
ϕ−1(γ)

)
= γ. Notice that whenever |h(U)| ≥ γ we can also conclude that either618

h(U).y ≥ γ or h(U).y ≤ −γ. This means that rγ (−h(U).y) is either 0 or 1. When h(U).y ≥ γ619

we have rγ (−h(U).y) = 0 and when h(U).y ≤ −γ we have rγ (−h(U).y) = 1. In other words if620

|h(U)| ≥ γ, we have621

rγ (−h(U).y) = 11 {sign (h(U)) ̸= y} (2)

On the other hand, we know that γ, z > 0 and c = ϕ−1(γ)/ϕ−1(z) > 0. Consequently,622

sign (h(U)) = sign
(

Last
(
b̂R (U, T − 1)

))
= f(U) for any U ∈ Rp×T . Lemma 36 suggests623

that624

P
[∣∣Last

(
bR(U, T − 1)

)∣∣ < z
]
= P

[∣∣∣Last
(
b̂R(U, T − 1)

)∣∣∣ < ϕ
(
c.ϕ−1(z)

)]
= P [|h(U)| < γ] .

Moreover, we know that z is chosen such that P
[∣∣Last

(
bR(U, T − 1)

)∣∣ < z
]
< η and the ramp loss625

is at most 1. Taking this and Equations 1 and 2 into account we can write that626

E(U,y)∼D [lγ (h, U, y)] = E(U,y)∼D [11 {sign (h(U)) ̸= y}| |h(U)| ≥ γ] .P [|h(U)| ≥ γ]

+ E(U,y)∼D [rγ (−h(U).y)||h(U)| < γ] .P
[∣∣Last

(
bR(U, T − 1)

)∣∣ < z
]

≤ E(U,y)∼D [11 {sign (h(U)) ̸= y}| |h(U)| ≥ γ] .P [|h(U)| ≥ γ] + η

≤ E(U,y)∼D [11 {sign (h(U)) ̸= y}| |h(U)| ≥ γ] .P [|h(U)| ≥ γ]

+ E(U,y)∼D [11 {sign (h(U)) ̸= y}| |h(U)| < γ] .P [|h(U)| < γ] + η

≤ E(U,y)∼D [11 {sign (h(U)) ̸= y}] + η

≤ E(U,y)∼D
[
l0−1 (f, U, y)

]
+ η.

627

Proof of Theorem 10.628

Proof. Define Fw = {f : [−1/2, 1/2] → {−1, 1} | f(U) = sign (h(U)) , h ∈ Hw} as the class of629

all sigmoid recurrent networks with w weights that output binary values. Let D be a distribution over630

[−1/2, 1/2]p×T × {−1, 1}. From Lemma 11 we know that for every f ∈ Fw there exists a function631

h ∈ Hw such that E(U,y)∼D [lγ (h, U, y)] ≤ E(U,y)∼D
[
l0−1 (f, U, y)

]
+ η, where η > 0 is any small632

value. Therefore, we can write that633

inf
h∈Hw

E(U,y)∼D [lγ (h, U, y)] ≤ inf
f∈Fw

E(U,y)∼D
[
l0−1 (f, U, y)

]
+ η. (3)

Let mHw(ϵ, δ) denote the sample complexity of PAC learning Hw with respect to ramp loss. There-634

fore, there exists an algorithm A that receives a set S of m ≥ mHw(ϵ, δ) i.i.d. samples from D and635

returns ĥ = A(S) such that with probability at least 1− δ we have636

E(U,y)∼D

[
lγ
(
ĥ, U, y

)]
≤ inf

h∈Hw

E(U,y)∼D [lγ (h, U, y)] + ϵ.

Let f̂ be a function in Fw such that f̂(U) = sign
(
ĥ(U)

)
for every U ∈ [−1/2, 1/2]p×T . Given637

the definitions of 0 − 1 loss and ramp loss, it is easy to verify that E(U,y)∼D [l]
0−1

(f̂ , U, y) ≤638
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E(U,y)∼D [l]
γ
(ĥ, U, y). Taking this and Equation 3 into account, we can define a new algorithm A′639

that, given the set S, returns f̂ ∈ Fw such that with probability at least 1− δ we have640

E(U,y)∼D [l]
0−1

(f̂ , U, y) ≤ inf
h∈Hw

E(U,y)∼D [l]
γ
(h, U, y)+ϵ ≤ inf

f∈Fw

E(U,y)∼D [l]
0−1

(f, U, y)+ϵ+η.

This means that we have641

m0−1
Fw

(ϵ+ η, δ) ≤ mHw
(ϵ, δ). (4)

On the other hand, from Theorem 34 we now that the VC-dimension of Fw is Ω(wT ). Moreover,642

Theorem 33 suggests that643

m0−1
Fw

(ϵ, δ) = Ω

(
wT + log(1/δ)

ϵ2

)
.

Taking the above equation and Equation 4 into account, by setting η = O(ϵ), we can write that644

mHw(ϵ, δ) = Ω

(
wT + log(1/δ)

ϵ2

)
,

which concludes our result.645

The following theorem states that we can find a lower bound on the sample complexity of PAC646

learning F with respect to 0− 1 loss based on its VC-dimension. For a proof see Theorems 5.2, and647

5.10 in Anthony et al. (1999).648

Theorem 33 (Lower Bound on the Sample Complexity of PAC Learning (Anthony et al., 1999)).649

Let F be a class of functions from a domain X to {−1, 1} and let d = VC(F) be the VC-dimension650

of the class F . Assume d < ∞. Then there exists an absolute constant C such that for every651

(ϵ, δ) ∈ (0, 1/40) we have652

m0−1
F (ϵ, δ) ≥ C

d+ log(1/δ)

ϵ2
.

We now introduce a lower bound on the VC-dimension of sigmoid recurrent neural networks with653

binary outputs which is based on a result due to Koiran and Sontag (1998).654

Theorem 34 (A Lower Bound on VC-Dimension of Sigmoid Recurrent Neural Networks). For655

every T ≥ 3 and w ≥ 19 there exists a well-defined class Hw = REC[MNET[p0, pk, w], T ] with656

the following property: The VC-dimension of Fw = {f : [−1/2, 1/2]p×T → {−1, 1} | f(U) =657

sign (h(U)) , h ∈ Hw} is Ω (wT ).658

The proof of the above theorem is essentially the same as the proof of the result in Koiran and Sontag659

(1998). The only difference is that the we should construct our network in a way that the last two660

dimensions of the output of MNET[p0, pk, w] must be similar to each other in order to feed back661

the value of Last
(
bR(f, t− 1)

)
with an extra node. Therefore, we only need a network that has a662

constant factor more weights than the network that is proposed in Koiran and Sontag (1998) which663

does not change the order of sample complexity.664

C.1 Lemmas used in the proof of Lemma 11665

In the following, we state two lemmas that will help in proving Lemma 11.666

Lemma 35. Let Wk−1 = [v1 . . . vpk ] ∈ Rpk−1×pk and Ŵk−1 = [v1 . . . c.vpk ]
⊤ for a constant667

c > 0. Define two single-layer networks bk−1(x) = Φ
(
W⊤

k−1x
)

and b̂k−1(x) = Φ
(
Ŵ⊤

k−1x
)

. Then,668

for any two multi-layer networks b = bk−1 ◦ . . . ◦ b0 and b̂ = b̂k−1 ◦ . . . ◦ b0 in a well-defined class669

MNET[p0, pk, w], every U ∈ [−1/2, 1/2]p×T , and every t ∈ [T − 1] we have670

First
(
bR (U, t)

)
= First

(
b̂R (U, t)

)
.
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Proof. We prove by induction. Denote r = bk−2 ◦ . . . ◦ bo. Therefore, we have b = bk−1 ◦ r and671

b̂ = b̂k−1 ◦ r. For t = 0, we can denote x(0) = r
([

00q−1 u(0)
]⊤)

and write that672

First
(
bR (U, 0)

)
= First

(
bk−1

(
r

([
00q−1

u(0)

])))
= First

(
bk−1

(
x(0)

))

= First


 ϕ

(
⟨v1, x(0)⟩

)
...

ϕ
(
⟨vpk−1, x

(0)⟩
)

 = First


 ϕ

(
⟨v1, x(0)⟩

)
...

ϕ
(
⟨c.vpk−1, x

(0)⟩
)



= First
(
b̂k−1

(
x(0)

))
= First

(
b̂R (U, 0)

)
,

where ⟨vi, x(t)⟩ denotes the inner product between vectors vi and x(t). Assume that we have673

First
(
bR (U, t− 1)

)
= First

(
b̂R (U, t− 1)

)
for t− 1 ∈ [T − 2]. We now prove that we also have674

First
(
bR (U, t)

)
= First

(
b̂R (U, t)

)
. Denote x(t) = r

([
First

(
bR (U, t− 1)

)
u(t)
]⊤)

. We can675

then write that676

First
(
bR (U, t)

)
= First

(
bk−1 ◦ r

([
First

(
bR (U, t− 1)

)
u(t)

]))
= First

(
bk−1

(
x(t)
))

= First


 ϕ

(
⟨v1, x(t)⟩

)
...

ϕ
(
⟨vpk−1, x

(t)⟩
)

 = First


 ϕ

(
⟨v1, x(t)⟩

)
...

ϕ
(
⟨c.vpk−1, x

(t)⟩
)



= First
(
b̂k−1

(
x(t)
))

= First
(
b̂R (U, t)

)
.

677

Lemma 36. Let Wk−1 = [v1 . . . vpk ] ∈ Rpk−1×pk and Ŵk−1 = [v1 . . . c.vpk ]
⊤ for a constant678

c > 0. Define two single-layer networks bk−1(x) = Φ
(
W⊤

k−1x
)

and b̂k−1(x) = Φ
(
Ŵ⊤

k−1x
)

. Let679

D be a distribution over [−1/2, 1/2]p×T . Then, for any two multi-layer networks b = bk−1 ◦ . . . ◦ b0680

and b̂ = b̂k−1 ◦ . . . ◦ b0 in a well-defined class MNET[p0, pk, w] we have681

P
[∣∣Last

(
bR (U, T − 1)

)∣∣ < z
]
= P

[∣∣∣Last
(
b̂R (U, T − 1)

)∣∣∣ < ϕ
(
c.ϕ−1 (z)

)]
,

where ϕ−1(z) is the inverse of sigmoid function ϕ at z.682

Proof. Denote r = bk−2 ◦ . . . ◦ bo and x(T−1) = r
([

First
(
bR (U, T − 2)

)
u(T−1)

]⊤)
. Note that683

Last
(
bR (U, T − 1)

)
= Last

(
bk−1 ◦ r

([
First

(
bR (U, T − 2)

)
u(T−1)

]))
= Last

(
bk−1

(
x(T−1)

))
= ϕ

(
⟨vpk

, x(T−1)⟩
)
,

where ⟨vpk
, x(T−1)⟩ denotes the inner product between vpk

and x(T−1). From Lemma 35, we know684

that First
(
bR (U, T − 2)

)
= First

(
b̂R (U, T − 2)

)
. Therefore, we also have that685

Last
(
b̂R (U, T − 1)

)
= Last

(
b̂k−1 ◦ r

([
First

(
b̂R (U, T − 2)

)
u(T−1)

]))
= Last

(
b̂k−1

(
x(T−1)

))
= ϕ

(
⟨c.vpk

, x(T−1)⟩
)
.
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Considering the above equations and the facts that ϕ(x) is an invertible and strictly increasing function686

and that ϕ(x) = −ϕ(−x), we can write687

P
[∣∣Last

(
bR (U, T − 1)

)∣∣ < z
]
= P

[
−z < Last

(
bR (U, T − 1)

)
< z
]

= P
[
−z ≤ ϕ

(
⟨vpk

, x(T−1)⟩
)
< z
]
= P

[
ϕ−1(−z) < ⟨vpk

, x(T−1)⟩ < ϕ−1 (z)
]

= P
[
−c.ϕ−1(z) ≤ ⟨c.vpk

, x(T−1)⟩ < c.ϕ−1 (z)
]

= P
[
ϕ
(
−c.ϕ−1 (z)

)
< ϕ

(
⟨c.vpk

, x(T−1)⟩
)
< ϕ

(
c.ϕ−1 (z)

)]
= P

[
−ϕ
(
c.ϕ−1 (z)

)
< ϕ

(
⟨c.vpk

, x(T−1)⟩
)
< ϕ

(
c.ϕ−1 (z)

)]
= P

[∣∣∣Last
(
b̂R (U, T − 1)

)∣∣∣ < ϕ
(
c.ϕ−1 (z)

)]
.

688

D Proof of upper bound689

D.1 Proof of Theorem 24690

We prove the following general theorem which holds for input domains Xs and ∆p×T .691

Theorem 37 (TV Covering Number of Gσ ◦ REC[Fσ, T ] From Gσ ◦ Fσ). Let s, p, q ∈ N such that692

s = p+ q − 1. Let F be a class of functions from Xs to Xq and denote by Fσ = F ◦ Gσ,s the class693

of its composition with noise. Then we have694

NU

(
ϵ,Gσ ◦ REC[Fσ, T ],∞, d∞TV ,∆p×T

)
≤ NU

(
ϵ/T,Gσ,q ◦ Fσ,∞, d∞TV ,Xs

)
.

Proof. Let C = {gσ,q ◦ f̂i ◦ gσ,s | f̂i ◦ gσ,s ∈ Fσ, i ∈ [r]} be a global ϵ-cover for Gσ,s ◦ Fσ with695

respect to domain Xs and d∞TV . Therefore, |C| ≤ NU

(
ϵ,Gσ,q ◦ Fσ,∞, d∞TV ,Xs

)
. Then for any696

function gσ,q ◦ f ◦ gσ,s ∈ Gσ,q ◦Fσ we know that there exists a function gσ,q ◦ f̂i ◦ gσ,s in C such that697

for every x ∈ Xs we have dTV

(
gσ,q ◦ f ◦ gσ,s(x), gσ,q ◦ f̂i ◦ gσ,s(x)

)
≤ ϵ. Denote h = f ◦gσ,s and698

ĥi = f̂i ◦ gσ,s. We prove by induction that for any input matrix U =
[
u(0) . . . u(T−1)

]
∈ ∆p×T ,699

where u(t) = δu(t) , we have dTV

(
gσ,q ◦ h

R (
U, T − 1

)
, gσ,q ◦ ĥi

R (
U, T − 1

))
≤ Tϵ.700

We start by proving that dTV

(
gσ,q ◦ h

R (
U, 0

)
, gσ,q ◦ ĥi

R (
U, 0

))
≤ ϵ. Denote x(0) =701 [

δ00q−1 u(0)

]⊤
∈ ∆s. We can write that702

dTV

(
gσ,q ◦ hR

(
U, 0

)
, gσ,q ◦ ĥR

i

(
U, 0

))
= dTV

(
gσ,q ◦ f ◦ gσ,s

([
δ00q−1

u(0)

])
, gσ,q ◦ f̂i ◦ gσ,s

([
δ00q−1

u(0)

]))
.

Since
([

δ00q−1 u(0)

]⊤)
∈ Xs and considering the fact that gσ,q ◦ f ◦ gσ,s = gσ,q ◦ h ∈ Gσ,q ◦ Fσ703

and gσ,q ◦ f̂i ◦ gσ,s = gσ,q ◦ ĥi ∈ Gσ,q ◦ Fσ are globally ϵ-close over Xs, we get that704

dTV

(
gσ,q ◦ h

R (
U, 0

)
, gσ,q ◦ ĥi

R (
U, 0

))
≤ ϵ.

Now assume that we have705

dTV

(
gσ,q ◦ h

R (
U, t− 1

)
, gσ,q ◦ ĥi

R (
U, t− 1

))
≤ tϵ. (5)
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We want to bound the total variation distance between gσ,q ◦ h
R (

U, t
)

and gσ,q ◦ ĥi

R (
U, t

)
, which706

are defined as follows.707

gσ,q ◦ h
R (

U, t
)
= gσ,q ◦ f ◦ gσ,s

([
First

(
h
R (

U, t− 1
))

u(t)

])
,

gσ,q ◦ ĥi

R (
U, t

)
= gσ,q ◦ f̂i ◦ gσ,s

First
(
ĥi

R (
U, t− 1

))
u(t)

 .

From Lemma 29 we know that708

dTV

(
First

(
gσ,q

(
h
R (

U, t− 1
)))

,First
(
gσ,q

(
ĥi

R (
U, t− 1

))))
≤ dTV

(
gσ,q

(
h
R (

U, t− 1
))

, gσ,q

(
ĥi

R (
U, t− 1

)))
≤ tϵ

It is easy to verify that First
(
gσ,q

(
h
R (

U, t− 1
)))

= gσ,q−1

(
First

(
h
R (

U, t− 1
)))

because709

gσ,q is a gaussian noise with covariance matrix equal to σ2Iq , where Iq ∈ Rq×q is the identity matrix.710

Considering this fact and Lemma 30 we can write that711

dTV

[gσ,q−1

(
First

(
h
R (

U, t− 1
)))

u(t)

]
,

gσ,q−1

(
First

(
ĥi

R (
U, t− 1

)))
u(t)


≤dTV

(
First

(
gσ,q

(
h
R (

U, t− 1
)))

,First
(
gσ,q

(
ĥi

R (
U, t− 1

))))
≤ tϵ.

Applying data processing inequality for TV distance (i.e., Lemma 27) we can write that712

dTV


gσ,q−1

(
First

(
h
R (

U, t− 1
)))

gσ,p

(
u(t)
)  ,

gσ,q−1

(
First

(
ĥi

R (
U, t− 1

)))
gσ,p

(
u(t)
)




= dTV

gσ,s

([
First

(
h
R (

U, t− 1
))

u(t)

])
, gσ,s

First
(
ĥi

R (
U, t− 1

))
u(t)

 ≤ tϵ.

(6)

Notice that
[
First

(
h
R (

U, t− 1
))

u(t)
]⊤

is in Xs. Since we know that gσ,q ◦ f ◦ gσ,s and gσ,q ◦713

f̂i ◦ gσ,s are globally ϵ-close on Xs, we can write that714

dTV

(
gσ,q ◦ f ◦ gσ,s

([
First

(
h
R (

U, t− 1
))

u(t)

])
, gσ,q ◦ f̂i ◦ gσ,s

([
First

(
h
R (

U, t− 1
))

u(t)

]))
≤ ϵ.

(7)
Moreover, from data processing inequality (i.e., Lemma 27) and Equation 6 we can conclude that715

dTV

gσ,q ◦ f̂i ◦ gσ,s

([
First

(
h
R (

U, t− 1
))

u(t)

])
, gσ,q ◦ f̂i ◦ gσ,s

First
(
ĥi

R (
U, t− 1

))
u(t)

 ≤ tϵ.

(8)

Finally, we can combine Equations 7 and 8 together with the triangle inequality for total variation716

distance to conclude that717

dTV

gσ,q ◦ f ◦ gσ,s

([
First

(
h
R (

U, t− 1
))

u(t)

])
, gσ,q ◦ f̂i ◦ gσ,s

First
(
ĥi

R (
U, t− 1

))
u(t)


= dTV

(
gσ,q ◦ h

R (
U, t

)
, gσ,q ◦ ĥi

R (
U, t

))
≤ (t+ 1)ϵ.
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So far, we have proved that for any input matrix U ∈ ∆p×T we have718

dTV

(
gσ,q ◦ h

R (
U, T − 1

)
, gσ,q ◦ ĥi

R (
U, T − 1

))
≤ Tϵ

By another application of Lemma 29 we can conclude that719

dTV

(
Last

(
gσ,q ◦ h

R (
U, T − 1

))
,Last

(
gσ,q ◦ ĥi

R (
U, T − 1

)))
≤ Tϵ

We can have a similar argument to the first function and write the above equation as720

dTV

(
gσ,1 ◦ Last

(
hR
(
U, T − 1

))
, gσ,1 ◦ Last

(
ĥR
i

(
U, T − 1

)))
≤ Tϵ.

This means that for every function gσ,1 ◦ Last
(
h
R (

U, T − 1
))

in Gσ,1 ◦ REC[Fσ, T ] there exists721

a function f̂i in F such that gσ,1 ◦ Last
(
h
R (

U, T − 1
))

and gσ,1 ◦ Last
(
ĥi

R (
U, T − 1

))
are722

globally Tϵ-cover close to each other with respect to ∆p×T . Setting ϵ′ = ϵ/T we can conclude that723

NU

(
ϵ,Gσ ◦ REC[Fσ, T ],∞, d∞TV ,∆p×T

)
≤ NU

( ϵ

T
,Gσ,q ◦ Fσ,∞, d∞TV ,Xs

)
.

The proof of the bounded domains essentially follows the same steps as above but for inputs that are724

bounded, i.e., inputs in ∆B,p×T and XB,s.725

D.2 A bound on the TV covering number of multi-layer noisy networks726

From Theorem 25 and Theorem 23 we can get the following bound on the total variation covering727

number of noisy multi-layer networks.728

Theorem 38 (TV Cover for Multi-Layer Noisy Neural Networks). For every ϵ, σ ∈ (0, 1) and every729

well-defined class MNETσ[p0, pk, w], we have730

logNU (ϵ,Gσ,pk
◦ MNETσ[p0, pk, w],∞, d∞TV ,X0.5,p0)

= O
(
w log

( w

ϵσ
log
( w

ϵσ

)))
= Õ

(
w log

(
1

ϵσ

))
,

where Õ hides logarithmic factors.731

Proof. Fix a choice of p1, . . . , pk−1 ∈ N and let F = NET[pk−1, pk] ◦ . . . ◦ Gσ ◦ NET[p0, p1] ◦ Gσ732

be a class of multi-layer sigmoid neural networks in MNETσ[p0, pk, w]. Notice that733

Gσ ◦ F = Gσ ◦ NET[pk−1, pk] ◦ . . . ◦ Gσ ◦ NET[p0, p1] ◦ Gσ

and that the covering number of Gσ ◦ F with respect to X1,p0 is the same as the covering number of734

Gσ ◦ NET[pk−1, pk] ◦ . . . ◦ Gσ ◦ NET[p0, p1] with respect to Gσ,p0 ◦ X1,p0 . From Theorem 25 we735

know that for any 0 ≤ i ≤ k − 1 we can bound the covering number of Gσ ◦ NET[pi, pi+1] as736

logNU

(
ϵ,Gσ ◦ NET[pi, pi+1],∞, d∞TV ,Gσ ◦ X0.5,pi

)
≤ pi(pi+1 + 1) log

(
30

p
5/2
i

√
ln ((5pi − ϵσ)/(ϵσ))

ϵ3/2σ2
ln

(
5pi
ϵσ

))
.

Note that in Fathollah Pour and Ashtiani (2022) the above bound was originally stated as a bound737

on the covering number of Gσ ◦ NET[pi, pi+1] with respect Gσ ◦ X1,pi
. However, we know that the738

bound with respect to Gσ ◦ X1,pi
is always an upper bound for the covering number with respect to739

Gσ ◦ X0.5,pi
. If, instead of setting B = 1, we wanted to consider B = 0.5 as a bound on the domain,740

the covering number bound would become only tighter in terms of constant factors. Considering the741
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above facts and applying Theorem 23 recursively, we can write that742

logNU

(
kϵ,Gσ ◦ F ,∞, d∞TV ,X0.5,p0

)
≤

k−1∑
i=0

logNU

(
ϵ,Gσ ◦ NET[pi, pi+1],∞, d∞TV ,Gσ ◦ X0.5,pi

)
≤
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pi(pi+1 + 1) log

(
30

p
5/2
i

√
ln ((5pi − ϵσ)/(ϵσ))

ϵ3/2σ2
ln

(
5pi
ϵσ

))
.

We can now set ϵ′ = ϵ/k and rewrite the above equation as743

logNU

(
ϵ,Gσ ◦ F ,∞, d∞TV ,X0.5,p0

)
≤

k−1∑
i=0

pi(pi+1 + 1)max
i

{
log

(
30

p
5/2
i

√
ln ((5pi − ϵ′σ)/(ϵ′σ))

ϵ′3/2σ2
ln

(
5pi
ϵ′σ

))}

≤ wmax
i

{
log
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30

p
5/2
i

√
ln ((5pi − ϵ′σ)/(ϵ′σ))

ϵ′3/2σ2
ln

(
5pi
ϵ′σ
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log

(
30

p
5/2
i

√
ln (5pi/(ϵ′σ))

ϵ′3/2σ2
ln

(
5pi
ϵ′σ

))}

≤ wmax
i

{
log

(
30

p
5/2
i

√
5pi/(ϵ′σ)

ϵ′3/2σ2
ln

(
5pi
ϵ′σ

))}

≤ wmax
i

{
log

(
30
√
5

p3i
ϵ′2σ3/2

ln

(
5pi
ϵ′σ

))}
.

Using the fact that ϵ, σ < 1, we can simplify the above equation and write that744

logNU

(
ϵ,Gσ ◦ F ,∞, d∞TV ,X0.5,p0

)
≤ wmax

i
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log

(
(30

√
5)3

p3i
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(
ln
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(
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√
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3 log
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√
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ln
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3 log

(
30
√
5
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ln
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= O

(
w log

( w

ϵσ
ln
( w

ϵσ
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= Õ

(
w log

(
1

ϵσ

))
,

where we used the fact that k ≤ w and pi ≤ w for every 0 ≤ i ≤ k. Now that we found an745

upper bound on the covering number of Gσ ◦ F for a choice of p1, . . . , pk−1, we can bound the746

covering number of Gσ ◦ MNETσ[p0, pk, w]. The number of different choices that we can have747

for p1, . . . , pk−1 is at most wk−1 since we know that
∑k

i=1 pipi−1 = w and therefore pi < w for748

every 0 ≤ i ≤ k. Therefore, we can simply take a union of the covering sets for each choice of749

p0, . . . , pk−1 as a covering set for Gσ ◦ MNETσ[p0, pk, w], which yields to the following covering750

number bound.751

logNU

(
ϵ,Gσ ◦ MNETσ[p0, pk, w],∞, d∞TV ,X0.5,p0

)
≤ logwk.NU

(
ϵ,Gσ ◦ F ,∞, d∞TV ,Gσ,p0

◦ X0.5,p0

)
≤ w logw + logNU

(
ϵ,Gσ ◦ F ,∞, d∞TV ,Gσ,p0

◦ X0.5,p0

)
(k ≤ w)

= O
(
w logw + w log

( w

ϵσ
ln
( w

ϵσ

)))
= O

(
w log

( w

ϵσ
ln
( w

ϵσ

)))
= Õ

(
w log

(
1

ϵσ

))
,

752
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D.3 Proof of Theorem 26753

Proof. We know that754

MNETσ[p0, pk, w] =
⋃

NET[pk−1, pk] ◦ . . . ◦ Gσ ◦ NET[p1, p2] ◦ Gσ ◦ NET[p0, p1] ◦ Gσ.

Define F =
⋃

NET[pk−1, pk] ◦ . . . ◦ Gσ ◦ NET[p1, p2] ◦ Gσ ◦ NET[p0, p1] and note that F ◦ Gσ =755

Fσ = MNETσ[p0, pk, w]. Therefore, we can use Theorem 24 to write that756

NU

(
ϵ,Gσ ◦ REC[MNETσ[p0, pk, w], T ],∞, d∞TV ,∆0.5,p×T

)
= NU

(
ϵ,Gσ ◦ REC[Fσ, T ],∞, d∞TV ,∆0.5,p×T

)
≤ NU

( ϵ

T
,Gσ ◦ Fσ,∞, d∞TV ,X0.5,s

)
= NU

( ϵ

T
,G ◦ MNETσ[p0, pk, w],∞, d∞TV ,X0.5,s

)
.

We know of a bound on the covering number of Gσ ◦ MNETσ[p0, pk, w] from Theorem 38. Using757

this bound we can rewrite the above equation as758

NU

(
ϵ,Gσ ◦ REC[MNETσ[p0, pk, w], T ],∞, d∞TV ,∆0.5,p×T

)
≤ NU

( ϵ

T
,G ◦ MNETσ[p0, pk, w],∞, d∞TV ,X0.5,s

)
= O

(
w log

(
wT

ϵσ
ln

(
wT

ϵσ

)))
= Õ

(
w log

(
T

ϵσ

))
.

759

D.4 Proof of Theorem 19760

Proof. From Theorem 43 we can write that761

E(x,y)∼D

[
lγ(f̂ , x, y)

]
≤ inf

f∈F
E(x,y)∼D [lγ(f, x, y)] + 2 inf

ϵ∈[0,1/2]

{
2

[
4ϵ+

12√
m

∫ 1/2

ϵ

√
lnNU (γν,F ,m, ∥.∥ℓ22 ) dν

]}
+ 6

√
ln(2/δ)

2m

≤ inf
f∈F

E(x,y)∼D [lγ(f, x, y)] + 2

[
8ϵ+

24√
m

∫ 1/2

ϵ

√
lnNU (γν,F ,m, ∥.∥ℓ22 ) dν

]
+ 6

√
ln(2/δ)

2m
(∀ϵ ∈ [0, 1/2])

≤ inf
f∈F

E(x,y)∼D [lγ(f, x, y)] + 16ϵ+
24√
m

√
lnNU (γϵ,F ,m, ∥.∥ℓ22 ) + 6

√
ln(2/δ)

2m
,

where we have used the fact that the integral is over [0, 1/2] and the covering number decreases762

monotonically with ϵ.763

D.5 Proof of Theorem 15764

We are now ready to state the proof of the upper bound on the sample complexity of PAC learning765

noisy recurrent neural networks with respect to the ramp loss.766

Proof. From Theorem 19 we know that if we choose algorithm A such that for every distribution767

over [−1/2, 1/2]p×T × {−1, 1} and any input S of m i.i.d. samples from D it outputs A(S) = ĥ =768

argminh∈Hw

1
|S|
∑

(x,y)∈S lγ(h, x, y) , then with probability at least 1− δ we have769

E(U,y)∼D

[
lγ(ĥ, U, y)

]
≤ inf

h∈Hw

E(U,y)∼D [lγ(h, U, y)] + 16ϵ+
24√
m

√
logNU (γϵ,Hw,m, ∥.∥ℓ22 ) + 6

√
log(2/δ)

2m
.

(9)
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We know that Qw is a class of functions from [−1/2, 1/2]p×T to [−1/2, 1/2]. We also know that770

∥x∥ℓ22 ≤ ∥x∥∞2 for every x. We can now use Theorem 22 to turn the bound on the covering771

number of Qw to a bound on the covering number of E(Qw). Note that Theorem 22 is stated772

for functions with outputs in [−B,B] and Qw = Gσ ◦ REC[MNETσ[p0, pk, w], T ] outputs values773

in Gσ,pk
◦ X0.5,pk

. However, Gσ,pk
is a class of zero mean Gaussian random variables that are774

independent of the output of REC[MNETσ[p0, pk, w], T ] and, therefore, they do not change the775

expectation and the covering number bound for E(Qw) would be the same as the covering number776

bound for E
(
REC[MNETσ[p0, pk, w], T ]

)
. Thus we know that777

NU (γϵ,Hw,m, ∥.∥ℓ22 ) ≤ NU (γϵ,Hw,m, ∥.∥∞2 ) ≤ NU (γϵ,Qw,∞, d∞TV ,∆0.5,p×T ).

We can, therefore, rewrite Equation 9 as follows.778

E(U,y)∼D

[
lγ(ĥ, U, y)

]
≤ inf

h∈Hw

E(U,y)∼D [lγ(h, U, y)] + 16ϵ+
24√
m

√
logNU (γϵ,Q2,∞, d∞TV ,∆0.5,p×T ) + 6

√
log(2/δ)

2m
.

(10)

Therefore, if we find m such that 1√
m

√
logNU (γϵ,Qw,∞, d∞TV ,∆p×T ) = O(ϵ) and

√
log(1/δ)

m =779

O(ϵ) then we can guarantee E(U,y)∼D

[
lγ(ĥ, U, y)

]
≤ infh∈Hw

E(U,y)∼D [lγ(h, U, y)] +O(ϵ)780

We know of a covering number bound for Qw from Theorem 26 which is as follows.781

logNU

(
ϵ,Qw,∞, d∞TV ,∆0.5,p×T

)
= O

(
w log

(
wT

ϵσ
ln

(
wT

ϵσ
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.

We can thus write that782 √
logNU (γϵ,Qw,∞, d∞TV ,∆0.5,p×T )

m
= O(ϵ) ⇔ m = O

(
1

ϵ2
w log

(
wT

ϵσ
ln

(
wT

ϵσ

)))
Moreover, if we want

√
log(1/δ)

m = O(ϵ) then we should have m = O
(

log(1/δ)
ϵ2

)
. Combining the783

above results, we can conclude that784

mHw
(ϵ, δ) = O

(
w log

(
wT
ϵσ ln
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+ log(1/δ)
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)
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(
w log
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.

samples is sufficient to conclude that with probability at least 1−δ we have E(U,y)∼D

[
lγ(ĥ, U, y)

]
≤785

infh∈Hw
E(U,y)∼D [lγ(h, U, y)] +O(ϵ), which implies PAC learning Hw with respect to ramp loss786

with a sample complexity of mHw
(ϵ, δ).787

E PAC learning and covering number bounds788

In this section, we discuss how we can find a bound on the sample complexity of PAC learning a class789

of functions with respect to ramp loss from a bound on its covering number. Particularly, we show790

how to use a bound on covering number to find the number of samples required to ensure uniform791

convergence with respect to ramp loss. We then connect the uniform convergence results to PAC792

learning and find the minimum number of samples required to guarantee PAC learning with respect793

to ramp loss.794

We start by defining uniform convergence (with respect to ramp loss).795

Definition 39 (Uniform Convergence with Respect to Ramp Loss). Let F be a class of functions796

from X to R. We say that F has uniform convergence property with respect to ramp loss with margin797

parameter γ > 0 if there exists some function m : (0, 1)2 → N such that for every distribution798

D over X × {−1, 1} and every ϵ, δ ∈ (0, 1), if S is a set of m(ϵ, δ) i.i.d. samples from D, then799

with probability at least 1 − δ (over the randomness of S) for every function f ∈ F we have800 ∣∣∣E(x,y)∼D [lγ(f, x, y)]− 1
|S|
∑

(x,y)∈S lγ(f, x, y)
∣∣∣ ≤ ϵ.801
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The sample complexity of uniform convergence for class F is denoted by mUC
F (ϵ, δ), which is the802

minimum number of samples required to guarantee uniform convergence for F . We now show that803

uniform convergence implies PAC learning (with respect to ramp loss).804

Lemma 40. Let F be a class of functions from X to R that satisfies uniform convergence property805

with respect to ramp loss. Then for any (ϵ, δ) ∈ (0, 1), we have mF (ϵ, δ) ≤ mUC
F (ϵ/2, δ), i.e., there806

exists an algorithm A such that for any distribution D over X × {−1, 1} and any (ϵ, δ) ∈ (0, 1), if S807

is a set of m ≥ mUC
F (ϵ/2, δ) i.i.d. samples from D, then with probability at least 1− δ, we have that808

E [(x, y) ∼ D] lγ(A(S), x, y) ≤ inff∈F E(x,y)∼D [lγ(f, x, y)] + ϵ.809

Proof. Let A be an algorithm that outputs the function in F that has the minimum empirical loss, i.e.,810

A(S) = argminf∈F
1
|S|
∑

(x,y)∈S lγ(f, x, y). Since S is a set of m ≥ mUC
F (ϵ/2, δ) samples, we811

know that with probability at least 1−δ we have
∣∣∣E(x,y)∼D [lγ(f, x, y)]− 1

|S|
∑

(x,y)∈S lγ(f, x, y)
∣∣∣ ≤812

ϵ/2 for every f ∈ F . Let f̂ = A(S). Then for every f ∈ F we can write that813

E(x,y)∼D

[
lγ(f̂ , x, y)

]
≤ 1

|S|
∑

(x,y)∈S

lγ(f̂ , x, y) +
ϵ

2
≤ 1

|S|
∑

(x,y)∈S

lγ(f, x, y) +
ϵ

2

≤ E(x,y)∈D [lγ(f, x, y)] +
ϵ

2
+

ϵ

2
= E(x,y)∈D [lγ(f, x, y)] + ϵ.

This implies that with m ≥ mUC
F (ϵ/2, δ) i.i.d. samples we can guarantee PAC learning with respect814

to ramp loss with parameters ϵ and δ. In other words, we have mF (ϵ, δ) ≤ mUC
F (ϵ/2, δ).815

The following theorem tells us that we can relate the bound on the covering number of a class of816

functions to the uniform convergence property for that class. The proof relies on bounding the817

Rademacher complexity of the class by a bound on its covering number (Dudley, 2010) and then818

relating the bound on the Rademacher complexity to uniform convergence property. See Shalev-819

Shwartz and Ben-David (2014) and Mohri et al. (2018) for a more detailed discussion and proof.820

Theorem 41. Let F be a class of functions from X to R and Fγ = {fγ : X × {−1, 1} → [0, 1] |821

fγ(x, y) = rγ (−f(x).y) , f ∈ F} be the class of its composition with ramp loss. Let D be a822

distribution over X × {−1, 1} and S ∼ Dm be an i.i.d. sample of size m. Then, for any δ ∈ (0, 1)823

with probability at least 1− δ (over the randomness of S) for every f ∈ F we have824

E(x,y)∼D [lγ(f, x, y)]

≤ 1

|S|
∑

(x,y)∈S

lγ(f, x, y) + inf
ϵ∈[0,1/2]

{
2

[
4ϵ+

12√
m

∫ 1/2

ϵ

√
logNU (ν,Fγ ,m, ∥.∥ℓ22 ) dν

]}
+ 3

√
log(2/δ)

2m
.

It is only left to find a bound on the covering number of Fγ from a bound on the covering number of825

F . The following lemma helps us finding this bound.826

Lemma 42 (From Covering Number of F to Covering Number of Fγ). Let F be a class of functions827

from X to R and Fγ = {fγ : X × {−1, 1} → [0, 1] | fγ(x, y) = rγ (−f(x).y) , f ∈ F} be the828

class of its composition with ramp loss. Then we have829

NU (ϵ,Fγ ,m, ∥.∥ℓ22 ) ≤ NU (γϵ,F ,m, ∥.∥ℓ22 ).

Proof. First, it is easy to verify that rγ (with respect to the first input) is a Lipschitz continuous830

function with respect to ∥.∥2 with Lipschitz factors of 1/γ; see e.g., section A.2 in Bartlett et al.831

(2017).832

Fix an input set S = {(x1, y1), . . . , (xm, ym)} ⊂ X ×Y and let C = {f̂i|S | f̂i ∈ F , i ∈ [r]} be an833

(γϵ)-cover for F|S . For the simplicity of notation, we denote the composition of f̂i with ramp loss by834

f̂γ,i. Now, we prove that Cγ = {f̂γ,i|S | f̂γ,i ∈ Fγ , i ∈ [r]} is also an ϵ-cover for Fγ |S .835

Given any f ∈ F , there exists f̂i|S ∈ C such that836 ∥∥∥(f̂i(x1), . . . , f̂i(xm))− (f(x1), . . . , f(xm))
∥∥∥ℓ2
2

≤ γϵ.
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We can then write that837 ∥∥∥(f̂γ,i(x1), . . . , f̂γ,i(xm))− (fγ(x1), . . . , fγ(xm))
∥∥∥ℓ2
2

=

√√√√ 1

m

m∑
k=1

(
f̂γ,i(xk)− fγ(xk)

)2

=

√√√√ 1

m

m∑
k=1

(
rγ

(
−f̂i(xk).yk

)
− rγ(−f(xk).yk)

)2
.

(11)

From the Lipschitz continuity of rγ (x) we can conclude that for any (x, y) ∈ X × Y ,838 ∣∣∣rγ (−f(x).y)− rγ(−f̂i(x).y)
∣∣∣ ≤ 1

γ

∣∣∣f̂i(x)− f(x)
∣∣∣.

Taking the above equation into account, we can rewrite Equation 11 as839 ∥∥∥(f̂γ,i(x1), . . . , f̂γ,i(xm))− (fγ(x1), . . . , fγ(xm))
∥∥∥ℓ2
2

≤ 1

γ

√√√√ 1

m

m∑
k=1

(
(f̂i(xk)− f(xk))

)2
≤ 1

γ

∥∥∥(f̂i(x1), . . . , f̂i(xm))− (f(x1), . . . , f(xm))
∥∥∥ℓ2
2

≤ 1

γ
γϵ

≤ ϵ.

In other words, for any fγ|S ∈ Fγ |S there exists f̂γ,i|S ∈ S such that
∥∥∥f̂γ,i|S − fγ|S

∥∥∥ℓ2
2

≤ ϵ and,840

therefore, Cγ is an ϵ-cover for Fγ |S and the result follows.841

We can now combine Theorem 41, Lemma 40, and Lemma 42 to state the following theorem, which842

implies that we can relate a bound on the covering number of a class F to PAC learning F with843

respect to ramp loss.844

Theorem 43. Let F be a class of functions from X to R. There exists an algorithm A with the845

following property: For every distribution D over X × {−1, 1} and every δ ∈ (0, 1), if S is a set of846

m i.i.d. samples from D, the algorithm outputs a hypothesis f = A(S) such that with probability at847

least 1− δ (over the randomness of S and A) we have848

E(x,y)∼D [lγ(f, x, y)]

≤ inf
f∈F

E(x,y)∼D [lγ(f, x, y)] + 2 inf
ϵ∈[0,1/2]

{
2

[
4ϵ+

12√
m

∫ 1/2

ϵ

√
logNU (ν,Fγ ,m, ∥.∥ℓ22 ) dν

]}
+ 6

√
log(2/δ)

2m
.

Proof. From Theorem 41 we know that for every f ∈ F with probability at least 1− δ we have849

E(x,y)∼D [lγ(f, x, y)]

≤ 1

|S|
∑

(x,y)∈S

lγ(f, x, y) + inf
ϵ∈[0,1/2]

{
2

[
4ϵ+

12√
m

∫ 1/2

ϵ

√
logNU (ν,Fγ ,m, ∥.∥ℓ22 ) dν

]}
+ 3

√
log(2/δ)

2m
.
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Lemma 40 suggests that if we choose algorithm A such that A(S) = f̂ =850

argminf∈F
1
|S|
∑

(x,y)∈S lγ(f, x, y) then for any f ∈ F with probability at least 1− δ we have851

E(x,y)∼D

[
lγ(f̂ , x, y)

]
≤ 1

|S|
∑

(x,y)∈S

lγ(f̂ , x, y) + inf
ϵ∈[0,1/2]

{
2

[
4ϵ+

12√
m

∫ 1/2

ϵ

√
logNU (ν,Fγ ,m, ∥.∥ℓ22 ) dν

]}
+ 3

√
log(2/δ)

2m

≤ 1

|S|
∑

(x,y)∈S

lγ(f, x, y) + inf
ϵ∈[0,1/2]

{
2

[
4ϵ+

12√
m

∫ 1/2

ϵ

√
logNU (γν,F ,m, ∥.∥ℓ22 ) dν

]}
+ 3

√
log(2/δ)

2m

≤ E(x,y)∼D [lγ(f, x, y)] + 2 inf
ϵ∈[0,1/2]

{
2

[
4ϵ+

12√
m

∫ 1/2

ϵ

√
logNU (γν,F ,m, ∥.∥ℓ22 ) dν

]}
+ 6

√
log(2/δ)

2m

≤ inf
f∈F

E(x,y)∼D [lγ(f, x, y)] + 2 inf
ϵ∈[0,1/2]

{
2

[
4ϵ+

12√
m

∫ 1/2

ϵ

√
logNU (γν,F ,m, ∥.∥ℓ22 ) dν

]}
+ 6

√
log(2/δ)

2m
.

852

In Appendix D we use the above theorem together with an approximation of the right hand side of the853

above inequality to find an upper bound on the sample complexity of PAC learning noisy recurrent854

neural networks with respect to ramp loss.855

F Missing proof from Section 7856

F.1 Proof of Theorem 22857

Proof. Let S = {U1, . . . , Um} ⊂ Rp×T be an input set and define S = {U1, . . . , Um} ⊂ ∆p×T .858

Let C = {f̂1|S , . . . , f̂r |S | f̂r ∈ F , i ∈ [r]} be an ϵ-cover for F |S with respect to d∞TV . Denote859

H = E(F) and let Ĥ =
{
ĥi(x) = E

f̂i

[
f̂i(x)

]
| i ∈ [r]

}
⊂ E(F) be a new set of non-random860

function.861

Given any random function f ∈ F and considering the fact that C is an ϵ-cover for F |S we know862

there exists f̂i, i ∈ [r] such that863

d∞TV

(
f̂i|S , f |S

)
= d∞TV

(
(f̂i(U1), . . . , f̂i(Um)), (f(U1), . . . , f(Um))

)
≤ ϵ.

From the above equation we can conclude that for any k ∈ [m] we have dTV

(
f̂i(Uk), f(Uk)

)
≤ ϵ.864

Further, for the corresponding h, ĥi ∈ E(F), we know that865

ĥi(Uk) = E
f̂i

[
f̂i(Uk)

]
=

∫
Rd

xD(f̂i(Uk))(x)dx,

h(Uk) = Ef

[
f(Uk)

]
=

∫
Rd

xD(f(Uk))(x)dx.

Denote I = D(f(Uk)) and Î = D(f̂i(Uk)). Define two new density functions Idiff and Îdiff as866

Idiff (x) =


I(x)− Î(x)

dTV (I, Î)
I(x) ≥ Î(x)

0 otherwise,

Îdiff (x) =


Î(x)− I(x)

dTV (I, Î)
Î(x) ≥ I(x)

0 otherwise.
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Also, we define Imin as867

Imin(x) =
min{I(x), Î(x)}∫
min{I(x), Î(x)}dx

=
min{I(x), Î(x)}
1− dTV (I, Î)

.

We can verify that868

I(x) =
(
1− dTV (I, Î)

)
Imin(x) + dTV (I, Î).Idiff (x)

Î(x) =
(
1− dTV (I, Î)

)
Imin(x) + dTV (I, Î).Îdiff (x).

We then find the ℓ2 distance between ĥi(Uk) and h(Uk) by869 ∥∥∥ĥi(Uk)− h(Uk)
∥∥∥
2

=

∥∥∥∥∫
Rd

xÎ(x)dx−
∫
Rd

xI(x)dx

∥∥∥∥
2

=

∥∥∥∥∫
Rd

x
[(

1− dTV (I, Î)
)
Imin(x) + dTV (I, Î).Îdiff (x)

]
−x
[(

1− dTV (I, Î)
)
Imin(x) + dTV (I, Î).Idiff (x)

]
dx
∥∥∥
2

=

∥∥∥∥∫
Rd

xdTV (I, Î)
[
Îdiff (x)− Idiff (x)

]
dx

∥∥∥∥
2

= dTV (I, Î)

∥∥∥∥∫
Rd

x
[
Îdiff (x)− Idiff (x)

]
dx

∥∥∥∥
2

≤ 2B
√
q dTV

(
f(Uk), f̂i(Uk)

)
(Bounded domain [−B,B]q and triangle inequality)

≤ 2Bϵ
√
q.

Since this result holds for any k ∈ [m], we have870

∥ĥi|S − h|S∥ℓ22 =

√√√√ 1

m

m∑
k=1

∥∥∥ĥi(Uk)− h(Uk)
∥∥∥2
2

≤

√√√√ 1

m

m∑
k=1

(2B
√
q)2
(
dTV

(
f(Uk), f̂i(Uk)

))2
≤ 2B

√
q

√√√√ 1

m

m∑
k=1

ϵ2 ≤ 2Bϵ
√
q.

Therefore, Ĥ|S is a 2Bϵ
√
q cover for H|S with respect to ∥.∥ℓ22 and |Ĥ|S | = r. This holds for any871

subset S of Rp×T with |S| = m. Therefore,872

NU (2Bϵ
√
q, E(F),m, ∥.∥ℓ22 ) ≤ NU (ϵ,F ,m, d∞TV ,∆p×T ) ≤ NU (ϵ,F ,∞, d∞TV ,∆p×T ).

873
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